Multidimensional Gauss reduction theory for conjugacy classes of
- [1] TU Graz 24, Kopernikusgasse 8010, Graz, Austria
 
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 1, page 99-109
 - ISSN: 1246-7405
 
Access Full Article
topAbstract
topHow to cite
topKarpenkov, Oleg. "Multidimensional Gauss reduction theory for conjugacy classes of $\mathrm{SL}(n,\mathbb{Z})$." Journal de Théorie des Nombres de Bordeaux 25.1 (2013): 99-109. <http://eudml.org/doc/275736>.
@article{Karpenkov2013,
	abstract = {In this paper we describe the set of conjugacy classes in the group $\{\mathord \{\rm SL\}\}(n,\mathbb\{Z\})$. We expand geometric Gauss Reduction Theory that solves the problem for $\{\mathord \{\rm SL\}\}(2,\mathbb\{Z\})$ to the multidimensional case, where $\varsigma $-reduced Hessenberg matrices play the role of reduced matrices. Further we find complete invariants of conjugacy classes in $\{\mathord \{\rm GL\}\}(n,\mathbb\{Z\})$ in terms of multidimensional Klein-Voronoi continued fractions.},
	affiliation = {TU Graz 24, Kopernikusgasse 8010, Graz, Austria},
	author = {Karpenkov, Oleg},
	journal = {Journal de Théorie des Nombres de Bordeaux},
	keywords = {special linear group; Gauss reduction theory; multidimensional continued fraction},
	language = {eng},
	month = {4},
	number = {1},
	pages = {99-109},
	publisher = {Société Arithmétique de Bordeaux},
	title = {Multidimensional Gauss reduction theory for conjugacy classes of $\mathrm\{SL\}(n,\mathbb\{Z\})$},
	url = {http://eudml.org/doc/275736},
	volume = {25},
	year = {2013},
}
TY  - JOUR
AU  - Karpenkov, Oleg
TI  - Multidimensional Gauss reduction theory for conjugacy classes of $\mathrm{SL}(n,\mathbb{Z})$
JO  - Journal de Théorie des Nombres de Bordeaux
DA  - 2013/4//
PB  - Société Arithmétique de Bordeaux
VL  - 25
IS  - 1
SP  - 99
EP  - 109
AB  - In this paper we describe the set of conjugacy classes in the group ${\mathord {\rm SL}}(n,\mathbb{Z})$. We expand geometric Gauss Reduction Theory that solves the problem for ${\mathord {\rm SL}}(2,\mathbb{Z})$ to the multidimensional case, where $\varsigma $-reduced Hessenberg matrices play the role of reduced matrices. Further we find complete invariants of conjugacy classes in ${\mathord {\rm GL}}(n,\mathbb{Z})$ in terms of multidimensional Klein-Voronoi continued fractions.
LA  - eng
KW  - special linear group; Gauss reduction theory; multidimensional continued fraction
UR  - http://eudml.org/doc/275736
ER  - 
References
top- H. Appelgate and H. Onishi, The similarity problem for integer matrices. Linear Algebra Appl. 42 (1982), 159–174. Zbl0484.15011MR656422
 - V. I. Arnold, Continued fractions (In Russian). Moscow Center of Continuous Mathematical Education, Moscow, 2002.
 - J. Buchmann, A generalization of Voronoĭ’s unit algorithm. I. J. Number Theory 20(2) (1985), 177–191. Zbl0575.12005MR790781
 - J. Buchmann, A generalization of Voronoĭ’s unit algorithm. II. J. Number Theory 20(2) (1985), 192–209. Zbl0575.12005MR790782
 - F. J. Grunewald, Solution of the conjugacy problem in certain arithmetic groups. Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), 95 of Stud. Logic Foundations Math., North-Holland, Amsterdam, 1980, 101–139. Zbl0447.20031MR579942
 - O. Karpenkov, On the triangulations of tori associated with two-dimensional continued fractions of cubic irrationalities. Funct. Anal. Appl. 38(2) (2004), 102–110. Russian version: Funkt. Anal. Prilozh. 38(2) (2004), 28–37. Zbl1125.11042MR2086625
 - O. Karpenkov, On Asymptotic Reducibility in . Technical report, arXiv:1205.4166, (2012).
 - S. Katok, Continued fractions, hyperbolic geometry and quadratic forms. In MASS selecta, Amer. Math. Soc., Providence, RI, 2003, 121–160. Zbl1091.11002MR2027174
 - F. Klein, Über eine geometrische Auffassung der gewöhnliche Kettenbruchentwicklung. Nachr. Ges. Wiss. Göttingen, Math-phys. Kl., 3:352–357, 1895.
 - E. I. Korkina, The simplest -dimensional continued fraction. Topology, 3. J. Math. Sci. 82(5) (1996), 3680–3685. Zbl0901.11003MR1428725
 - G. Lachaud, Voiles et polyhedres de Klein. Act. Sci. Ind., Hermann, 2002.
 - Y. I. Manin and M. Marcolli, Continued fractions, modular symbols, and noncommutative geometry. Selecta Math. (N.S.), 8(3) (2002), 475–521. Zbl1116.11033MR1931172
 - G. F. Voronoĭ, Algorithm of the generalized continued fraction (In Russian). In Collected works in three volumes, volume I. USSR Ac. Sci., Kiev, 1952.
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.