Dispersion pour l’équation de Schrödinger 1-D avec plusieurs potentiels de Dirac

Valeria Banica[1]

  • [1] Laboratoire de Mathématiques et de Modélisation d’Évry (UMR 8071) Département de Mathématiques Université d’Évry 23 Bd. de France, 91037 Evry France

Séminaire Laurent Schwartz — EDP et applications (2013-2014)

  • page 1-11
  • ISSN: 2266-0607

Abstract

top
Ce texte présente les résultats obtenus dans [BI11, BI14] en collaboration avec Liviu Ignat sur la représentation et les propriétés de dispersion de la solution de l’équation linéaire de Schrödinger sur certains graphes métriques. Le cas de l’équation de Schrödinger sur la droite avec plusieurs potentiels de Dirac découle comme cas particulier.

How to cite

top

Banica, Valeria. "Dispersion pour l’équation de Schrödinger 1-D avec plusieurs potentiels de Dirac." Séminaire Laurent Schwartz — EDP et applications (2013-2014): 1-11. <http://eudml.org/doc/275744>.

@article{Banica2013-2014,
abstract = {Ce texte présente les résultats obtenus dans [BI11, BI14] en collaboration avec Liviu Ignat sur la représentation et les propriétés de dispersion de la solution de l’équation linéaire de Schrödinger sur certains graphes métriques. Le cas de l’équation de Schrödinger sur la droite avec plusieurs potentiels de Dirac découle comme cas particulier.},
affiliation = {Laboratoire de Mathématiques et de Modélisation d’Évry (UMR 8071) Département de Mathématiques Université d’Évry 23 Bd. de France, 91037 Evry France},
author = {Banica, Valeria},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {fre},
pages = {1-11},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Dispersion pour l’équation de Schrödinger 1-D avec plusieurs potentiels de Dirac},
url = {http://eudml.org/doc/275744},
year = {2013-2014},
}

TY - JOUR
AU - Banica, Valeria
TI - Dispersion pour l’équation de Schrödinger 1-D avec plusieurs potentiels de Dirac
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2013-2014
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 11
AB - Ce texte présente les résultats obtenus dans [BI11, BI14] en collaboration avec Liviu Ignat sur la représentation et les propriétés de dispersion de la solution de l’équation linéaire de Schrödinger sur certains graphes métriques. Le cas de l’équation de Schrödinger sur la droite avec plusieurs potentiels de Dirac découle comme cas particulier.
LA - fre
UR - http://eudml.org/doc/275744
ER -

References

top
  1. R. Adami, C. Cacciapuoti, D. Finco, and Noja D. Stationary states of NLS on star graphs. Europhysics Letters, 100(1) :10003, 6p, 2012. Zbl1247.81104
  2. R. Adami, C. Cacciapuoti, D. Finco, and D. Noja. Fast solitons on star graphs. Rev. Math. Phys., 23(4) :409–451, 2011. Zbl1222.35182MR2804557
  3. R. Adami, C. Cacciapuoti, D. Finco, and D. Noja. On the structure of critical energy levels for the cubic focusing NLS on star graphs. J. Phys. A, 45(19) :192001, 7, 2012. Zbl1247.81104MR2924493
  4. R. Adami, C. Cacciapuoti, D. Finco, and D. Noja. Constrained energy minimization and orbital stability for the NLS equation on a star graph. Annales de l’Institut Henri Poincaré (C) Non Linear Analysis, 2013. to appear, http://dx.doi.org/10.1016/j.anihpc.2013.09.003. Zbl1304.81087
  5. R. Adami, C. Cacciapuoti, D. Finco, and D. Noja. Variational properties and orbital stability of standing waves for NLS equation on a star graph. J. Differential Equations, 257(10) :3738–3777, 2014. Zbl1300.35129MR3260240
  6. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden. Solvable models in quantum mechanics. AMS Chelsea Publishing, Providence, RI, second edition, 2005. With an appendix by Pavel Exner. Zbl1078.81003MR2105735
  7. F. Ali Mehmeti, K. Ammari, and S. Nicaise. Dispersive effects and high frequency behaviour for the Schrödinger equation in star-shaped networks. http://arxiv.org/abs/1204.4998, 2012. Zbl1334.34064
  8. R. Adami and D. Noja. Exactly Solvable Models and Bifurcations : the Case of the Cubic N L S with a δ or a δ ' Interaction in Dimension One. Math. Model. Nat. Phenom., 9(5) :1–16, 2014. Zbl1304.35628MR3264305
  9. R. Adami, D. Noja, and N. Visciglia. Constrained energy minimization and ground states for NLS with point defects. Discrete Contin. Dyn. Syst. Ser. B, 18(5) :1155–1188, 2013. Zbl1280.35132MR3038749
  10. J. Angulo Pava and L. C. F. Ferreira. On the Schrödinger equation with singular potentials. Differential Integral Equations, 27(7-8) :767–800, 2014. Zbl06433756MR3200763
  11. R. Adami and A. Sacchetti. The transition from diffusion to blow-up for a nonlinear Schrödinger equation in dimension 1. J. Phys. A, 38(39) :8379–8392, 2005. Zbl1084.35081MR2188549
  12. R. Adami, E. Serra, and P. Tilli. Nls ground states on graphs. http://arxiv.org/abs/1406.4036, 2014. Zbl1330.35484
  13. V. Banica. Dispersion and Strichartz inequalities for Schrödinger equations with singular coefficients. SIAM J. Math. Anal., 35(4) :868–883 (electronic), 2003. Zbl1058.35048MR2049025
  14. V. Banica and L. I. Ignat. Dispersion for the Schrödinger equation on networks. J. Math. Phys., 52(8) :083703, 14, 2011. Zbl1272.81079MR2858075
  15. V. Banica and L. I. Ignat. Dispersion for the Schrödinger equation on the line with multiple Dirac delta potentials and on delta trees. Anal. PDE, 7(4) :903–927, 2014. Zbl1297.35200MR3254348
  16. R. C. Cascaval and C. T. Hunter. Linear and nonlinear Schrödinger equations on simple networks. Libertas Math., 30 :85–98, 2010. Zbl1210.35271MR2675854
  17. K. Datchev and J. Holmer. Fast soliton scattering by attractive delta impurities. Comm. Partial Differential Equations, 34(7-9) :1074–1113, 2009. Zbl1194.35403MR2560311
  18. V. Duchêne, J. L. Marzuola, and M. I. Weinstein. Wave operator bounds for one-dimensional Schrödinger operators with singular potentials and applications. J. Math. Phys., 52(1) :013505, 17, 2011. Zbl1314.81085MR2791127
  19. P. Exner. Vertex couplings in quantum graphs : approximations by scaled Schrödinger operators. Proceedings of the ICM Satellite Conference Mathematics in Science and Technology (New Delhi 2010 ; A.H. Siddiqi, R.C. Singh, P. Manchanda, eds.) World Scientific, Singapore, 71–92, 2011. Zbl1264.81214MR2883421
  20. R. Fukuizumi and L. Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation with a repulsive Dirac delta potential. Discrete Contin. Dyn. Syst., 21(1) :121–136, 2008. Zbl1144.35465MR2379459
  21. R. Fukuizumi, M. Ohta, and T. Ozawa. Nonlinear Schrödinger equation with a point defect. Ann. Inst. H. Poincaré Anal. Non Linéaire, 25(5) :837–845, 2008. Zbl1145.35457MR2457813
  22. I. Gelfand, D. Raikov, and G. Shilov. Commutative normed rings. Translated from the Russian, with a supplementary chapter. Chelsea Publishing Co., New York, 1964. MR205105
  23. B. Gaveau and L. S. Schulman. Explicit time-dependent Schrödinger propagators. J. Phys. A, 19(10) :1833–1846, 1986. Zbl0621.35082MR851483
  24. S. Gnutzmann and U. Smilansky. Quantum graphs : Applications to quantum chaos and universal spectral statistics. Advances in Physics, 55 :527–625, October 2006. 
  25. J. Holmer, J. Marzuola, and M. Zworski. Fast soliton scattering by delta impurities. Comm. Math. Phys., 274(1) :187–216, 2007. Zbl1126.35068MR2318852
  26. J. Holmer, J. Marzuola, and M. Zworski. Soliton splitting by external delta potentials. J. Nonlinear Sci., 17(4) :349–367, 2007. Zbl1128.35384MR2335125
  27. J. Holmer and M. Zworski. Slow soliton interaction with delta impurities. J. Mod. Dyn., 1(4) :689–718, 2007. Zbl1137.35060MR2342704
  28. L. I. Ignat. Strichartz estimates for the Schrödinger equation on a tree and applications. SIAM J. Math. Anal., 42(5) :2041–2057, 2010. Zbl1217.35199MR2684310
  29. V. Kostrykin and R. Schrader. Laplacians on metric graphs : eigenvalues, resolvents and semigroups. In Quantum graphs and their applications, volume 415 of Contemp. Math., pages 201–225. Amer. Math. Soc., Providence, RI, 2006. Zbl1122.34066MR2277618
  30. H. Kovařík and A. Sacchetti. A nonlinear Schrödinger equation with two symmetric point interactions in one dimension. J. Phys. A, 43(15) :155205, 16, 2010. Zbl1189.35310MR2608273
  31. P. Kuchment. Quantum graphs. I. Some basic structures. Waves Random Media, 14(1) :S107–S128, 2004. Special section on quantum graphs. Zbl1063.81058MR2042548
  32. P. Kuchment. Quantum graphs. II. Some spectral properties of quantum and combinatorial graphs. J. Phys. A, 38(22) :4887–4900, 2005. Zbl1070.81062MR2148631
  33. P. Kuchment. Quantum graphs : an introduction and a brief survey. In Analysis on graphs and its applications, volume 77 of Proc. Sympos. Pure Math., pages 291–312. Amer. Math. Soc., Providence, RI, 2008. Zbl1210.05169MR2459876
  34. S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim, and Y. Sivan. Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential. Phys. D, 237(8) :1103–1128, 2008. Zbl1147.35356MR2450497
  35. E. B. Manoukian. Explicit derivation of the propagator for a Dirac delta potential. J. Phys. A, 22(1) :67–70, 1989. Zbl0697.35146MR975175

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.