Stability in exponential time of Minkowski space-time with a space-like translation symmetry

Cécile Huneau[1]

  • [1] DMA, École Normale Supérieure 45, rue d’Ulm 75005 Paris

Séminaire Laurent Schwartz — EDP et applications (2014-2015)

  • page 1-14
  • ISSN: 2266-0607

Abstract

top
In this note, we discuss the nonlinear stability in exponential time of Minkowski space-time with a translation space-like Killing field, proved in [13]. In the presence of such a symmetry, the 3 + 1 vacuum Einstein equations reduce to the 2 + 1 Einstein equations with a scalar field. We work in generalized wave coordinates. In this gauge Einstein equations can be written as a system of quasilinear quadratic wave equations. The main difficulty in [13] is due to the decay in 1 / t of free solutions to the wave equation in 2 dimensions, which is weaker than in 3 dimensions. As in [21], we have to rely on the particular structure of Einstein equations in wave coordinates. We also have to carefully choose an approximate solution with a non trivial behaviour at space-like infinity to enforce convergence to Minkowski space-time at time-like infinity.

How to cite

top

Huneau, Cécile. "Stability in exponential time of Minkowski space-time with a space-like translation symmetry." Séminaire Laurent Schwartz — EDP et applications (2014-2015): 1-14. <http://eudml.org/doc/275746>.

@article{Huneau2014-2015,
abstract = {In this note, we discuss the nonlinear stability in exponential time of Minkowski space-time with a translation space-like Killing field, proved in [13]. In the presence of such a symmetry, the $3+1$ vacuum Einstein equations reduce to the $2+1$ Einstein equations with a scalar field. We work in generalized wave coordinates. In this gauge Einstein equations can be written as a system of quasilinear quadratic wave equations. The main difficulty in [13] is due to the decay in $\{1\}/\{\sqrt\{t\}\}$ of free solutions to the wave equation in $2$ dimensions, which is weaker than in $3$ dimensions. As in [21], we have to rely on the particular structure of Einstein equations in wave coordinates. We also have to carefully choose an approximate solution with a non trivial behaviour at space-like infinity to enforce convergence to Minkowski space-time at time-like infinity.},
affiliation = {DMA, École Normale Supérieure 45, rue d’Ulm 75005 Paris},
author = {Huneau, Cécile},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-14},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Stability in exponential time of Minkowski space-time with a space-like translation symmetry},
url = {http://eudml.org/doc/275746},
year = {2014-2015},
}

TY - JOUR
AU - Huneau, Cécile
TI - Stability in exponential time of Minkowski space-time with a space-like translation symmetry
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 14
AB - In this note, we discuss the nonlinear stability in exponential time of Minkowski space-time with a translation space-like Killing field, proved in [13]. In the presence of such a symmetry, the $3+1$ vacuum Einstein equations reduce to the $2+1$ Einstein equations with a scalar field. We work in generalized wave coordinates. In this gauge Einstein equations can be written as a system of quasilinear quadratic wave equations. The main difficulty in [13] is due to the decay in ${1}/{\sqrt{t}}$ of free solutions to the wave equation in $2$ dimensions, which is weaker than in $3$ dimensions. As in [21], we have to rely on the particular structure of Einstein equations in wave coordinates. We also have to carefully choose an approximate solution with a non trivial behaviour at space-like infinity to enforce convergence to Minkowski space-time at time-like infinity.
LA - eng
UR - http://eudml.org/doc/275746
ER -

References

top
  1. S. Alinhac – « The null condition for quasilinear wave equations in two space dimensions I », Invent. Math.145 (2001), no. 3, p. 597–618. Zbl1112.35341MR1856402
  2. S. Alinhac – « An example of blowup at infinity for a quasilinear wave equation », Astérisque (2003), no. 284, p. 1–91, Autour de l’analyse microlocale. Zbl1053.35097MR2003417
  3. A. Ashtekar, J. Bičák & B. G. Schmidt – « Asymptotic structure of symmetry-reduced general relativity », Phys. Rev. D (3)55 (1997), no. 2, p. 669–686. MR1435250
  4. R. Bartnik & J. Isenberg – « The constraint equations », in The Einstein equations and the large scale behavior of gravitational fields, Birkhäuser, Basel, 2004, p. 1–38. Zbl1073.83009MR2098912
  5. G. Beck – «  Zur Theorie binärer Gravitationsfelder », Zeitschrift für Physik33 (1925), no. 14, p. 713–728. 
  6. B. K. Berger, P. T. Chruściel & V. Moncrief – « On “asymptotically flat” space-times with G 2 -invariant Cauchy surfaces », Ann. Physics237 (1995), no. 2, p. 322–354. Zbl0967.83507MR1314228
  7. Y. Choquet-Bruhat & R. Geroch – « Global aspects of the Cauchy problem in general relativity », Comm. Math. Phys.14 (1969), p. 329–335. Zbl0182.59901MR250640
  8. Y. Choquet-Bruhat & V. Moncrief – « Nonlinear stability of an expanding universe with the S 1 isometry group », in Partial differential equations and mathematical physics (Tokyo, 2001), Progr. Nonlinear Differential Equations Appl., vol. 52, Birkhäuser Boston, Boston, MA, 2003, p. 57–71. Zbl1062.35149MR1957625
  9. D. Christodoulou & S. Klainerman – The global nonlinear stability of the Minkowski space, Princeton Mathematical Series, vol. 41, Princeton University Press, Princeton, NJ, 1993. Zbl0827.53055MR1316662
  10. P. Godin – « Lifespan of solutions of semilinear wave equations in two space dimensions », Comm. Partial Differential Equations18 (1993), no. 5-6, p. 895–916. Zbl0813.35055MR1218523
  11. A. Hoshiga – « The existence of global solutions to systems of quasilinear wave equations with quadratic nonlinearities in 2-dimensional space », Funkcial. Ekvac.49 (2006), no. 3, p. 357–384. Zbl1149.35383MR2297944
  12. C. Huneau – « Constraint equations for 3 + 1 vacuum Einstein equations with a translational space-like Killing field in the asymptotically flat case II », http://arxiv.org/abs/1410.6061. 
  13. —, « Stability in exponential time of Minkowski Space-time with a translation space-like Killing field », http://arxiv.org/abs/1410.6068. 
  14. F. John – « Blow-up for quasilinear wave equations in three space dimensions », Comm. Pure Appl. Math.34 (1981), no. 1, p. 29–51. Zbl0453.35060MR600571
  15. S. Klainerman – « The null condition and global existence to nonlinear wave equations », in Nonlinear systems of partial differential equations in applied mathematics, Part 1 (Santa Fe, N.M., 1984), Lectures in Appl. Math., vol. 23, Amer. Math. Soc., Providence, RI, 1986, p. 293–326. Zbl0599.35105MR837683
  16. S. Klainerman – « Uniform decay estimates and the Lorentz invariance of the classical wave equation », Comm. Pure Appl. Math.38 (1985), no. 3, p. 321–332. Zbl0635.35059MR784477
  17. H. Kubo & K. Kubota – « Scattering for systems of semilinear wave equations with different speeds of propagation », Adv. Differential Equations7 (2002), no. 4, p. 441–468. Zbl1223.35232MR1869119
  18. H. Lindblad – « Global solutions of nonlinear wave equations », Comm. Pure Appl. Math.45 (1992), no. 9, p. 1063–1096. Zbl0840.35065MR1177476
  19. —, « Global solutions of quasilinear wave equations », Amer. J. Math.130 (2008), no. 1, p. 115–157. MR2382144
  20. H. Lindblad & I. Rodnianski – « The weak null condition for Einstein’s equations », C. R. Math. Acad. Sci. Paris336 (2003), no. 11, p. 901–906. Zbl1045.35101MR1994592
  21. —, « The global stability of Minkowski space-time in harmonic gauge », Ann. of Math. (2)171 (2010), no. 3, p. 1401–1477. Zbl1192.53066MR2680391
  22. R. Wald – General Relativity, The University of Chicago press, 1984. Zbl0549.53001MR757180

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.