On the error term of the logarithm of the lcm of a quadratic sequence
Juanjo Rué[1]; Paulius Šarka[2]; Ana Zumalacárregui[3]
- [1] Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) Nicolás Cabrera 13-15 28049 Madrid, Spain
- [2] Institute of Mathematics and Informatics Akademijos 4 08663 Vilnius, Lithuania and Department of Mathematics and Informatics, Vilnius University Naugarduko 24 03225 Vilnius, Lithuania
- [3] Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departmento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid, Spain
Journal de Théorie des Nombres de Bordeaux (2013)
- Volume: 25, Issue: 2, page 457-470
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topRué, Juanjo, Šarka, Paulius, and Zumalacárregui, Ana. "On the error term of the logarithm of the lcm of a quadratic sequence." Journal de Théorie des Nombres de Bordeaux 25.2 (2013): 457-470. <http://eudml.org/doc/275750>.
@article{Rué2013,
abstract = {We study the logarithm of the least common multiple of the sequence of integers given by $1^2+1, 2^2+1,\dots , n^2+1$. Using a result of Homma [5] on the distribution of roots of quadratic polynomials modulo primes we calculate the error term for the asymptotics obtained by Cilleruelo [3].},
affiliation = {Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) Nicolás Cabrera 13-15 28049 Madrid, Spain; Institute of Mathematics and Informatics Akademijos 4 08663 Vilnius, Lithuania and Department of Mathematics and Informatics, Vilnius University Naugarduko 24 03225 Vilnius, Lithuania; Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM) and Departmento de Matemáticas Universidad Autónoma de Madrid 28049 Madrid, Spain},
author = {Rué, Juanjo, Šarka, Paulius, Zumalacárregui, Ana},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {quadratic sequence; quadratic polynomial; lcm; Vinogradov symbol},
language = {eng},
month = {9},
number = {2},
pages = {457-470},
publisher = {Société Arithmétique de Bordeaux},
title = {On the error term of the logarithm of the lcm of a quadratic sequence},
url = {http://eudml.org/doc/275750},
volume = {25},
year = {2013},
}
TY - JOUR
AU - Rué, Juanjo
AU - Šarka, Paulius
AU - Zumalacárregui, Ana
TI - On the error term of the logarithm of the lcm of a quadratic sequence
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/9//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 2
SP - 457
EP - 470
AB - We study the logarithm of the least common multiple of the sequence of integers given by $1^2+1, 2^2+1,\dots , n^2+1$. Using a result of Homma [5] on the distribution of roots of quadratic polynomials modulo primes we calculate the error term for the asymptotics obtained by Cilleruelo [3].
LA - eng
KW - quadratic sequence; quadratic polynomial; lcm; Vinogradov symbol
UR - http://eudml.org/doc/275750
ER -
References
top- P. Bateman, J. Kalb and A. Stenger, A limit involving least common multiples. Amer. Math. Monthly 109 (2002), 393–394. Zbl1124.11300
- P. L. Chebishev, Memoire sur les nombres premiers. J. de Math. Pures et Appl. 17 (1852), 366–390.
- J. Cilleruelo, The least common multiple of a quadratic sequence. Compos. Math. 147 (2011), no.4, 1129–1150. Zbl1248.11068MR2822864
- W. Duke, J. Friedlander and H. Iwaniec, Equidistribution of roots of a quadratic congruence to prime moduli. Ann. of Math. 141 (1995), no.2, 423–441. Zbl0840.11003MR1324141
- K. Homma, On the discrepancy of uniformly distributed roots of quadratic congruences. J. of Number Theory 128 (2008), no.3, 500–508. Zbl1195.11089MR2389853
- S. Hong, G. Quian and Q. Tan, The least common multiple of sequence of product of linear polynomials. Acta Math. Hungar. 135 (2012), no.1-2, 160-167. Zbl1265.11093MR2898796
- H. L. Montgomery and R. C. Vaughan, Multiplicative number theory. I. Classical theory. Cambridge University Press, 2007. Zbl1245.11002MR2378655
- P. Moree, Counting Numbers in multiplicative sets: Landau versus Ramanujan. Šiauliai Math. Semin., to appear. Zbl1315.11083MR3012680
- H. Niederreiter, Random number generation and quasi-Monte Carlo methods. CBMS-NSF Regional Conference Series in Applied Mathematics 63 , Society for Industrial and Applied Mathematics (SIAM), 1992. Zbl0761.65002MR1172997
- Á. Tóth, Roots of quadratic congruences. Internat. Math. Res. Notices 14 (2000), 719–739. Zbl1134.11339MR1776618
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.