Inverse scattering without phase information

R.G. Novikov[1]

  • [1] CNRS (UMR 7641), Centre de Mathématiques Appliquées,École Polytechnique, 91128 Palaiseau, France & IEPT RAS, 117997 Moscow, Russia

Séminaire Laurent Schwartz — EDP et applications (2014-2015)

  • page 1-13
  • ISSN: 2266-0607

Abstract

top
We report on non-uniqueness, uniqueness and reconstruction results in quantum mechanical and acoustic inverse scattering without phase information. We are motivated by recent and very essential progress in this domain.

How to cite

top

Novikov, R.G.. "Inverse scattering without phase information." Séminaire Laurent Schwartz — EDP et applications (2014-2015): 1-13. <http://eudml.org/doc/275759>.

@article{Novikov2014-2015,
abstract = {We report on non-uniqueness, uniqueness and reconstruction results in quantum mechanical and acoustic inverse scattering without phase information. We are motivated by recent and very essential progress in this domain.},
affiliation = {CNRS (UMR 7641), Centre de Mathématiques Appliquées,École Polytechnique, 91128 Palaiseau, France & IEPT RAS, 117997 Moscow, Russia},
author = {Novikov, R.G.},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-13},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Inverse scattering without phase information},
url = {http://eudml.org/doc/275759},
year = {2014-2015},
}

TY - JOUR
AU - Novikov, R.G.
TI - Inverse scattering without phase information
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 13
AB - We report on non-uniqueness, uniqueness and reconstruction results in quantum mechanical and acoustic inverse scattering without phase information. We are motivated by recent and very essential progress in this domain.
LA - eng
UR - http://eudml.org/doc/275759
ER -

References

top
  1. T. Aktosun, P.E. Sacks, Inverse problem on the line without phase information, Inverse Problems 14, 1998, 211-224. Zbl0902.34011MR1619433
  2. T. Aktosun, R. Weder, Inverse scattering with partial information on the potential, J. Math. Anal. Appl. 270, 2002, 247-266. Zbl1012.34080MR1911764
  3. N.V. Alexeenko, V.A. Burov, O.D. Rumyantseva, Solution of the three-dimensional acoustical inverse scattering problem. The modified Novikov algorithm, Acoust. J. 54(3), 2008, 469-482 (in Russian); English transl.: Acoust. Phys. 54(3), 2008, 407-419. 
  4. Yu.M. Berezanskii, On the uniqueness theorem in the inverse problem of spectral analysis for the Schrödinger equation, Tr. Mosk. Mat. Obshch. 7, 1958, 3-62 (in Russian). Zbl0125.33501MR101377
  5. F.A. Berezin, M.A. Shubin, The Schrödinger Equation, Vol. 66 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, 1991. Zbl0749.35001MR1186643
  6. A.L. Buckhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl. 16(1), 2008, 19-33. Zbl1142.30018MR2387648
  7. V.A. Burov, N.V. Alekseenko, O.D. Rumyantseva, Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem, Acoust. J. 55(6), 2009, 784-798 (in Russian); English transl.: Acoustical Physics 55(6), 2009, 843-856. 
  8. K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd edn. Springer, Berlin, 1989. Zbl0681.35088MR985100
  9. V.Enss, R.Weder, Inverse potential scattering: a geometrical approach, Zbl0838.35092
  10. P. Deift, E.Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. 32, 1979, 121-251. Zbl0388.34005MR512420
  11. G. Eskin, Lectures on Linear Partial Differential Equations, Graduate Studies in Mathematics, Vol.123, American Mathematical Society, 2011. Zbl1228.35001MR2809923
  12. L.D. Faddeev, Uniqueness of the solution of the inverse scattering problem, Vest. Leningrad Univ. 7, 1956, 126-130 (in Russian). MR80533
  13. L.D. Faddeev, Inverse problem of quantum scattering theory. II, Itogy Nauki i Tekh. Ser. Sovrem. Probl. Mat. 3, 1974, 93-180 (in Russian); English transl.: Journal of Soviet Mathematics 5, 1976, 334-396. Zbl0299.35027MR523015
  14. L.D. Faddeev, S.P. Merkuriev, Quantum Scattering Theory for Multi-particle Systems, Nauka, Moscow, 1985 (in Russian); English transl: Math. Phys. Appl. Math. 11 (1993), Kluwer Academic Publishers Group, Dordrecht. Zbl0797.47005MR1255101
  15. F. Gesztesy, B. Simon, Inverse spectral analysis with partial information on the potential. I. The case of an a.c. component in the spectrum, Helv. Phys. Acta 70, 1997, 66-71. Zbl0870.34017MR1441597
  16. P.G. Grinevich, The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy, Uspekhi Mat. Nauk 55:6(336),2000, 3-70 (Russian); English transl.: Russian Math. Surveys 55:6, 2000, 1015-1083. Zbl1022.81057MR1840357
  17. P. Hähner, T. Hohage, New stability estimates for the inverse acoustic inhomogeneous medium problem and applications, SIAM J. Math. Anal., 33(3), 2001, 670-685. Zbl0993.35091MR1871415
  18. G.M. Henkin, R.G. Novikov, The ¯ -equation in the multidimensional inverse scattering problem, Uspekhi Mat. Nauk 42(3), 1987, 93-152 (in Russian); English transl.: Russ. Math. Surv. 42(3), 1987, 109-180. Zbl0674.35085MR896879
  19. M.I. Isaev, Exponential instability in the inverse scattering problem on the energy interval, Funkt. Anal. Prilozhen. 47(3), 2013, 28-36 (in Russian); English transl.: Funct. Anal Appl. 47, 2013, 187-194. MR3154837
  20. M.I. Isaev, R.G. Novikov, New global stability estimates for monochromatic inverse acoustic scattering, SIAM J. Math. Anal. 45(3), 2013, 1495-1504. Zbl1302.35443MR3056754
  21. M.V. Klibanov, Phaseless inverse scattering problems in three dimensions, SIAM J. Appl. Math. 74, 2014, 392-410. Zbl1293.35188MR3180873
  22. M.V. Klibanov, V.G. Romanov, The first solution of a long standing problem: Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrödinger equation, J. Inverse Ill-Posed Probl. http://dx.doi.org/10.1515/jiip-2015-0025; http://arxiv.org/abs/1412.8210v1, December 28, 2014. MR3331767
  23. M.V. Klibanov, V.G. Romanov, Reconstruction procedures for two inverse scattering problems without the phase information, http://arxiv.org/abs/1505.01905v1, May 8, 2015. Zbl1331.35388MR3331767
  24. M.V. Klibanov, P.E. Sacks, Phaseless inverse scattering and the phase problem in optics, J. Math. Phys. 33, 1992, 3813-3821. Zbl0761.35111MR1185858
  25. B.M. Levitan, Inverse Sturm-Liuville Problems, VSP, Zeist, 1987. Zbl0749.34001MR933088
  26. V.A. Marchenko, Sturm-Liuville Operators and Applications, Birkhäuser, Basel, 1986. Zbl0592.34011MR897106
  27. R.B. Melrose, Geometric scattering theory, Cambridge University Press, 1995. Zbl0849.58071MR1350074
  28. H.E. Moses, Calculation of the scattering potential from reflection coefficients, Phys. Rev. 102, 1956, 559-567. Zbl0070.21906MR80251
  29. R.G. Newton, Inverse Schrödinger scattering in three dimensions, Springer, Berlin, 1989. Zbl0697.35005MR985100
  30. R.G. Novikov, Multidimensional inverse spectral problem for the equation - Δ ψ + ( v ( x ) - E u ( x ) ) ψ = 0 , Funkt. Anal. Prilozhen. 22(4), 1988, 11-22 (in Russian); English transl.: Funct. Anal. Appl. 22, 1988, 263-272. Zbl0689.35098MR976992
  31. R.G. Novikov, The inverse scattering problem at fixed energy level for the two-dimensional Schrödinger operator, J. Funct. Anal., 103, 1992, 409-463. Zbl0762.35077MR1151554
  32. R.G. Novikov, The inverse scattering problem at fixed energy for Schrödinger equation with an exponentially decreasing potential, Comm. Math. Phys. 161, 1994, 569-595. Zbl0803.35166MR1269391
  33. R.G. Novikov, Inverse scattering up to smooth functions for the Schrödinger equation in dimension 1, Bull. Sci. Math. 120, 1996, 473-491. Zbl0874.34068MR1411551
  34. R.G. Novikov, Approximate inverse quantum scattering at fixed energy in dimension 2, Proc. Steklov Inst. Math. 225, 1999, 285-302. Zbl0980.81058MR1725948
  35. R.G. Novikov, The ¯ -approach to monochromatic inverse scattering in three dimensions, J. Geom. Anal. 18, 2008, 612-631. Zbl1144.81032MR2393272
  36. R.G. Novikov, Absence of exponentially localized solitons for the Novikov-Veselov equation at positive energy, Physics Letters A 375, 2011, 1233-1235. Zbl1242.35196MR2770407
  37. R.G. Novikov, An iterative approach to non-overdetermined inverse scattering at fixed energy, Mat. Sb. 206(1), 2015, 131-146 (in Russian); English transl.: Sbornik: Mathematics 206(1), 2015, 120-134. MR3354965
  38. R.G. Novikov, Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions, J. Geom. Anal. http://dx.doi.org/10.1007/s12220-014-9553-7; http://arxiv.org/abs/1412.5006v1, December 16, 2014. 
  39. R.G. Novikov, Formulas for phase recovering from phaseless scattering data at fixed frequency, Bull. Sci. Math. http://dx.doi.org/10.1016/j.bulsci.2015.04.005; http://arxiv.org/abs/1502.02282v2, February 14, 2015. Zbl1330.35277MR1944391
  40. R.G. Novikov, Phaseless inverse scattering in the one-dimensional case, Eurasian Journal of Mathematical and Computer Applications 3(1), 2015, 63-69; http://arxiv.org/abs/1503.02159, March 7, 2015. MR3354965
  41. N.N. Novikova, V.M. Markushevich, On the uniqueness of the solution of the inverse scattering problem on the real axis for the potentials placed on the positive half-axis. Comput. Seismology 18, 1985, 176-184 (in Russian). 
  42. T. Regge, Introduction to complex orbital moments, Nuovo Cimento 14, 1959, 951-976. Zbl0087.42903MR143532
  43. P. Stefanov, Stability of the inverse problem in potential scattering at fixed energy, Annales de l’Institut Fourier, tome 40(4), 1990, 867-884. Zbl0715.35082MR1096595

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.