Inverse scattering without phase information
R.G. Novikov[1]
- [1] CNRS (UMR 7641), Centre de Mathématiques Appliquées,École Polytechnique, 91128 Palaiseau, France & IEPT RAS, 117997 Moscow, Russia
Séminaire Laurent Schwartz — EDP et applications (2014-2015)
- page 1-13
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topNovikov, R.G.. "Inverse scattering without phase information." Séminaire Laurent Schwartz — EDP et applications (2014-2015): 1-13. <http://eudml.org/doc/275759>.
@article{Novikov2014-2015,
abstract = {We report on non-uniqueness, uniqueness and reconstruction results in quantum mechanical and acoustic inverse scattering without phase information. We are motivated by recent and very essential progress in this domain.},
affiliation = {CNRS (UMR 7641), Centre de Mathématiques Appliquées,École Polytechnique, 91128 Palaiseau, France & IEPT RAS, 117997 Moscow, Russia},
author = {Novikov, R.G.},
journal = {Séminaire Laurent Schwartz — EDP et applications},
language = {eng},
pages = {1-13},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Inverse scattering without phase information},
url = {http://eudml.org/doc/275759},
year = {2014-2015},
}
TY - JOUR
AU - Novikov, R.G.
TI - Inverse scattering without phase information
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2014-2015
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
SP - 1
EP - 13
AB - We report on non-uniqueness, uniqueness and reconstruction results in quantum mechanical and acoustic inverse scattering without phase information. We are motivated by recent and very essential progress in this domain.
LA - eng
UR - http://eudml.org/doc/275759
ER -
References
top- T. Aktosun, P.E. Sacks, Inverse problem on the line without phase information, Inverse Problems 14, 1998, 211-224. Zbl0902.34011MR1619433
- T. Aktosun, R. Weder, Inverse scattering with partial information on the potential, J. Math. Anal. Appl. 270, 2002, 247-266. Zbl1012.34080MR1911764
- N.V. Alexeenko, V.A. Burov, O.D. Rumyantseva, Solution of the three-dimensional acoustical inverse scattering problem. The modified Novikov algorithm, Acoust. J. 54(3), 2008, 469-482 (in Russian); English transl.: Acoust. Phys. 54(3), 2008, 407-419.
- Yu.M. Berezanskii, On the uniqueness theorem in the inverse problem of spectral analysis for the Schrödinger equation, Tr. Mosk. Mat. Obshch. 7, 1958, 3-62 (in Russian). Zbl0125.33501MR101377
- F.A. Berezin, M.A. Shubin, The Schrödinger Equation, Vol. 66 of Mathematics and Its Applications, Kluwer Academic, Dordrecht, 1991. Zbl0749.35001MR1186643
- A.L. Buckhgeim, Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl. 16(1), 2008, 19-33. Zbl1142.30018MR2387648
- V.A. Burov, N.V. Alekseenko, O.D. Rumyantseva, Multifrequency generalization of the Novikov algorithm for the two-dimensional inverse scattering problem, Acoust. J. 55(6), 2009, 784-798 (in Russian); English transl.: Acoustical Physics 55(6), 2009, 843-856.
- K. Chadan, P.C. Sabatier, Inverse Problems in Quantum Scattering Theory, 2nd edn. Springer, Berlin, 1989. Zbl0681.35088MR985100
- V.Enss, R.Weder, Inverse potential scattering: a geometrical approach, Zbl0838.35092
- P. Deift, E.Trubowitz, Inverse scattering on the line, Comm. Pure Appl. Math. 32, 1979, 121-251. Zbl0388.34005MR512420
- G. Eskin, Lectures on Linear Partial Differential Equations, Graduate Studies in Mathematics, Vol.123, American Mathematical Society, 2011. Zbl1228.35001MR2809923
- L.D. Faddeev, Uniqueness of the solution of the inverse scattering problem, Vest. Leningrad Univ. 7, 1956, 126-130 (in Russian). MR80533
- L.D. Faddeev, Inverse problem of quantum scattering theory. II, Itogy Nauki i Tekh. Ser. Sovrem. Probl. Mat. 3, 1974, 93-180 (in Russian); English transl.: Journal of Soviet Mathematics 5, 1976, 334-396. Zbl0299.35027MR523015
- L.D. Faddeev, S.P. Merkuriev, Quantum Scattering Theory for Multi-particle Systems, Nauka, Moscow, 1985 (in Russian); English transl: Math. Phys. Appl. Math. 11 (1993), Kluwer Academic Publishers Group, Dordrecht. Zbl0797.47005MR1255101
- F. Gesztesy, B. Simon, Inverse spectral analysis with partial information on the potential. I. The case of an a.c. component in the spectrum, Helv. Phys. Acta 70, 1997, 66-71. Zbl0870.34017MR1441597
- P.G. Grinevich, The scattering transform for the two-dimensional Schrödinger operator with a potential that decreases at infinity at fixed nonzero energy, Uspekhi Mat. Nauk 55:6(336),2000, 3-70 (Russian); English transl.: Russian Math. Surveys 55:6, 2000, 1015-1083. Zbl1022.81057MR1840357
- P. Hähner, T. Hohage, New stability estimates for the inverse acoustic inhomogeneous medium problem and applications, SIAM J. Math. Anal., 33(3), 2001, 670-685. Zbl0993.35091MR1871415
- G.M. Henkin, R.G. Novikov, The -equation in the multidimensional inverse scattering problem, Uspekhi Mat. Nauk 42(3), 1987, 93-152 (in Russian); English transl.: Russ. Math. Surv. 42(3), 1987, 109-180. Zbl0674.35085MR896879
- M.I. Isaev, Exponential instability in the inverse scattering problem on the energy interval, Funkt. Anal. Prilozhen. 47(3), 2013, 28-36 (in Russian); English transl.: Funct. Anal Appl. 47, 2013, 187-194. MR3154837
- M.I. Isaev, R.G. Novikov, New global stability estimates for monochromatic inverse acoustic scattering, SIAM J. Math. Anal. 45(3), 2013, 1495-1504. Zbl1302.35443MR3056754
- M.V. Klibanov, Phaseless inverse scattering problems in three dimensions, SIAM J. Appl. Math. 74, 2014, 392-410. Zbl1293.35188MR3180873
- M.V. Klibanov, V.G. Romanov, The first solution of a long standing problem: Reconstruction formula for a 3-d phaseless inverse scattering problem for the Schrödinger equation, J. Inverse Ill-Posed Probl. http://dx.doi.org/10.1515/jiip-2015-0025; http://arxiv.org/abs/1412.8210v1, December 28, 2014. MR3331767
- M.V. Klibanov, V.G. Romanov, Reconstruction procedures for two inverse scattering problems without the phase information, http://arxiv.org/abs/1505.01905v1, May 8, 2015. Zbl1331.35388MR3331767
- M.V. Klibanov, P.E. Sacks, Phaseless inverse scattering and the phase problem in optics, J. Math. Phys. 33, 1992, 3813-3821. Zbl0761.35111MR1185858
- B.M. Levitan, Inverse Sturm-Liuville Problems, VSP, Zeist, 1987. Zbl0749.34001MR933088
- V.A. Marchenko, Sturm-Liuville Operators and Applications, Birkhäuser, Basel, 1986. Zbl0592.34011MR897106
- R.B. Melrose, Geometric scattering theory, Cambridge University Press, 1995. Zbl0849.58071MR1350074
- H.E. Moses, Calculation of the scattering potential from reflection coefficients, Phys. Rev. 102, 1956, 559-567. Zbl0070.21906MR80251
- R.G. Newton, Inverse Schrödinger scattering in three dimensions, Springer, Berlin, 1989. Zbl0697.35005MR985100
- R.G. Novikov, Multidimensional inverse spectral problem for the equation , Funkt. Anal. Prilozhen. 22(4), 1988, 11-22 (in Russian); English transl.: Funct. Anal. Appl. 22, 1988, 263-272. Zbl0689.35098MR976992
- R.G. Novikov, The inverse scattering problem at fixed energy level for the two-dimensional Schrödinger operator, J. Funct. Anal., 103, 1992, 409-463. Zbl0762.35077MR1151554
- R.G. Novikov, The inverse scattering problem at fixed energy for Schrödinger equation with an exponentially decreasing potential, Comm. Math. Phys. 161, 1994, 569-595. Zbl0803.35166MR1269391
- R.G. Novikov, Inverse scattering up to smooth functions for the Schrödinger equation in dimension 1, Bull. Sci. Math. 120, 1996, 473-491. Zbl0874.34068MR1411551
- R.G. Novikov, Approximate inverse quantum scattering at fixed energy in dimension 2, Proc. Steklov Inst. Math. 225, 1999, 285-302. Zbl0980.81058MR1725948
- R.G. Novikov, The -approach to monochromatic inverse scattering in three dimensions, J. Geom. Anal. 18, 2008, 612-631. Zbl1144.81032MR2393272
- R.G. Novikov, Absence of exponentially localized solitons for the Novikov-Veselov equation at positive energy, Physics Letters A 375, 2011, 1233-1235. Zbl1242.35196MR2770407
- R.G. Novikov, An iterative approach to non-overdetermined inverse scattering at fixed energy, Mat. Sb. 206(1), 2015, 131-146 (in Russian); English transl.: Sbornik: Mathematics 206(1), 2015, 120-134. MR3354965
- R.G. Novikov, Explicit formulas and global uniqueness for phaseless inverse scattering in multidimensions, J. Geom. Anal. http://dx.doi.org/10.1007/s12220-014-9553-7; http://arxiv.org/abs/1412.5006v1, December 16, 2014.
- R.G. Novikov, Formulas for phase recovering from phaseless scattering data at fixed frequency, Bull. Sci. Math. http://dx.doi.org/10.1016/j.bulsci.2015.04.005; http://arxiv.org/abs/1502.02282v2, February 14, 2015. Zbl1330.35277MR1944391
- R.G. Novikov, Phaseless inverse scattering in the one-dimensional case, Eurasian Journal of Mathematical and Computer Applications 3(1), 2015, 63-69; http://arxiv.org/abs/1503.02159, March 7, 2015. MR3354965
- N.N. Novikova, V.M. Markushevich, On the uniqueness of the solution of the inverse scattering problem on the real axis for the potentials placed on the positive half-axis. Comput. Seismology 18, 1985, 176-184 (in Russian).
- T. Regge, Introduction to complex orbital moments, Nuovo Cimento 14, 1959, 951-976. Zbl0087.42903MR143532
- P. Stefanov, Stability of the inverse problem in potential scattering at fixed energy, Annales de l’Institut Fourier, tome 40(4), 1990, 867-884. Zbl0715.35082MR1096595
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.