Stability of the inverse problem in potential scattering at fixed energy

Plamen Stefanov

Annales de l'institut Fourier (1990)

  • Volume: 40, Issue: 4, page 867-884
  • ISSN: 0373-0956

Abstract

top
We prove an estimate of the kind q 1 - q 2 L C ϕ ( A q 1 - A q 2 R , 3 / 2 - 1 / 2 ) , where A q i ( ω , θ ) , i = 1 , 2 is the scattering amplitude related to the compactly supported potential q i ( x ) at a fixed energy level k = const., ϕ ( t ) = ( - ln t ) - δ , 0 < δ < 1 and · R , 3 / 2 - 1 / 2 is a suitably defined norm.

How to cite

top

Stefanov, Plamen. "Stability of the inverse problem in potential scattering at fixed energy." Annales de l'institut Fourier 40.4 (1990): 867-884. <http://eudml.org/doc/74903>.

@article{Stefanov1990,
abstract = {We prove an estimate of the kind $\Vert q_1-q_2\Vert _\{L^\infty \} \le C \phi (\Vert A_\{q_1\}-A_\{q_2\}\Vert _\{R,3/2-1/2\})$, where $A_\{q_i\}(\omega ,\theta )$, $i=1,2$ is the scattering amplitude related to the compactly supported potential $q_i(x)$ at a fixed energy level $k=$ const., $\phi (t) = (-\ln t)^\{-\delta \}$, $0&lt; \delta &lt; 1$ and $\Vert \cdot \Vert _\{R,3/2-1/2\}$ is a suitably defined norm.},
author = {Stefanov, Plamen},
journal = {Annales de l'institut Fourier},
keywords = {stability estimate; unknown potential},
language = {eng},
number = {4},
pages = {867-884},
publisher = {Association des Annales de l'Institut Fourier},
title = {Stability of the inverse problem in potential scattering at fixed energy},
url = {http://eudml.org/doc/74903},
volume = {40},
year = {1990},
}

TY - JOUR
AU - Stefanov, Plamen
TI - Stability of the inverse problem in potential scattering at fixed energy
JO - Annales de l'institut Fourier
PY - 1990
PB - Association des Annales de l'Institut Fourier
VL - 40
IS - 4
SP - 867
EP - 884
AB - We prove an estimate of the kind $\Vert q_1-q_2\Vert _{L^\infty } \le C \phi (\Vert A_{q_1}-A_{q_2}\Vert _{R,3/2-1/2})$, where $A_{q_i}(\omega ,\theta )$, $i=1,2$ is the scattering amplitude related to the compactly supported potential $q_i(x)$ at a fixed energy level $k=$ const., $\phi (t) = (-\ln t)^{-\delta }$, $0&lt; \delta &lt; 1$ and $\Vert \cdot \Vert _{R,3/2-1/2}$ is a suitably defined norm.
LA - eng
KW - stability estimate; unknown potential
UR - http://eudml.org/doc/74903
ER -

References

top
  1. [A] S. ALESSANDRINI, Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172. Zbl0616.35082MR89f:35195
  2. [EMOT] A. ERDÉLYI, W. MAGNUS, F. OBERHETTINGER and F. C. TRICOMI, Higher Transcendental Functions, Vol. 2, McGraw Hill, New York, 1953. Zbl0052.29502MR15,419i
  3. [L] R. LEIS, Zur Monotonie der Eigenwerte selbstadjungierter elliptischer Differentialgleichungen, Math. Z., 96 (1967), 26-32. Zbl0143.14501MR34 #8008
  4. [M] C. MÜLLER, Grundprobleme der Mathematischen Theorie Elektromagnetischer Schwingungen, Springer, 1957. Zbl0087.21305
  5. [Na1] A. NACHMAN, Reconstruction from boundary measurements, Ann. Math., 128 (1988), 531-576. Zbl0675.35084MR90i:35283
  6. [Na2] A. NACHMAN, Exact reconstruction procedures for some inverse scattering and inverse boundary problems, Meeting on inverse problems, Montpellier, 1989. 
  7. [NSU] A. NACHMAN, J. SYLVESTER and G. UHLMANN, An n-dimensional Borg-Levison theorem, Comm. Math. Physics, 115 (1988), 595-605. Zbl0644.35095MR89g:35082
  8. [NO] R. G. NOVIKOV, Multidimensional inverse spectral problems for the equation - Δѱ + (v(x) - Eu(x))ѱ = 0, Funkt. Analizi i Ego Prilozheniya, 22 (4) (1988), 11-12; Translation in Funct. Anal. and its Appl., 22 (4) (1988), 263-272. Zbl0689.35098MR90h:35243
  9. [R] A. G. RAMM, Recovery of the potential from fixed energy scattering data, Inverse Probl., 4 (1988), 877-886. Zbl0632.35075MR90g:35165a
  10. [RS] M. REED and B. SIMON, Methods of Modern Mathematical Physics, IV, Accademic Press, New York, 1978. Zbl0401.47001
  11. [S] B. SIMON, Schrödinger semigroups, Bull. A.M.S., 7 (3) (1982), 447-526. Zbl0524.35002MR86b:81001a
  12. [SU1] J. SYLVESTER and G. UHLMANN, A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math., 39 (1986), 91-112. Zbl0611.35088MR87j:35377
  13. [SU2] J. SYLVESTER and G. UHLMANN, A global uniqueness theorem for an inverse boundary value problem. Ann. Math., 125 (1987), 153-169. Zbl0625.35078MR88b:35205
  14. [SU3] J. SYLVESTER and G. UHLMANN, Inverse boundary value problem at the boundary - continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197-221. Zbl0632.35074MR89f:35213
  15. [SU4] J. SYLVESTER and G. UHLMANN, The Dirichlet to Neumann map and its applications, Proceedings of meeting in Arcata, California on inverse problems, July 29-August 4, 1989. Zbl0713.35100

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.