Kac’s chaos and Kac’s program

Stéphane Mischler[1]

  • [1] Université Paris-Dauphine & IUF CEREMADE, UMR CNRS 7534 Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16 France

Séminaire Laurent Schwartz — EDP et applications (2012-2013)

  • Volume: 2012-2013, page 1-17
  • ISSN: 2266-0607

Abstract

top
In this note I present the main results about the quantitative and qualitative propagation of chaos for the Boltzmann-Kac system obtained in collaboration with C. Mouhot in [33] which gives a possible answer to some questions formulated by Kac in [25]. We also present some related recent results about Kac’s chaos and Kac’s program obtained in [34, 23, 13] by K. Carrapatoso, M. Hauray, C. Mouhot, B. Wennberg and myself.

How to cite

top

Mischler, Stéphane. "Kac’s chaos and Kac’s program." Séminaire Laurent Schwartz — EDP et applications 2012-2013 (2012-2013): 1-17. <http://eudml.org/doc/275761>.

@article{Mischler2012-2013,
abstract = {In this note I present the main results about the quantitative and qualitative propagation of chaos for the Boltzmann-Kac system obtained in collaboration with C. Mouhot in [33] which gives a possible answer to some questions formulated by Kac in [25]. We also present some related recent results about Kac’s chaos and Kac’s program obtained in [34, 23, 13] by K. Carrapatoso, M. Hauray, C. Mouhot, B. Wennberg and myself.},
affiliation = {Université Paris-Dauphine & IUF CEREMADE, UMR CNRS 7534 Place du Maréchal de Lattre de Tassigny 75775 Paris Cedex 16 France},
author = {Mischler, Stéphane},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {Kac's program; Kac's chaos; kinetic theory; master equation; mean-field limit; jump process; collision process; Boltzmann equation; Maxwell molecules; non cutoff; hard spheres; Monge-Kantorovich-Wasserstein distance; entropy chaos; Fisher information chaos; CLT with optimal rate; quantitative chaos; qualitative chaos; uniform in time},
language = {eng},
pages = {1-17},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {Kac’s chaos and Kac’s program},
url = {http://eudml.org/doc/275761},
volume = {2012-2013},
year = {2012-2013},
}

TY - JOUR
AU - Mischler, Stéphane
TI - Kac’s chaos and Kac’s program
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2012-2013
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2012-2013
SP - 1
EP - 17
AB - In this note I present the main results about the quantitative and qualitative propagation of chaos for the Boltzmann-Kac system obtained in collaboration with C. Mouhot in [33] which gives a possible answer to some questions formulated by Kac in [25]. We also present some related recent results about Kac’s chaos and Kac’s program obtained in [34, 23, 13] by K. Carrapatoso, M. Hauray, C. Mouhot, B. Wennberg and myself.
LA - eng
KW - Kac's program; Kac's chaos; kinetic theory; master equation; mean-field limit; jump process; collision process; Boltzmann equation; Maxwell molecules; non cutoff; hard spheres; Monge-Kantorovich-Wasserstein distance; entropy chaos; Fisher information chaos; CLT with optimal rate; quantitative chaos; qualitative chaos; uniform in time
UR - http://eudml.org/doc/275761
ER -

References

top
  1. Arkeryd, L., Caprino, S., and Ianiro, N. The homogeneous Boltzmann hierarchy and statistical solutions to the homogeneous Boltzmann equation. J. Statist. Phys. 63, 1-2 (1991), 345–361. MR1115588
  2. Bodineau, T., Gallagher, I., and Saint-Raymond, L. The brownian motion as the limit of a deterministic system of hard-spheres. http://arxiv.org/abs/1305.3397, preprint (2013). Zbl1337.35107
  3. Boissard, E., and Le Gouic, T. On the mean speed of convergence of empirical and occupation measures in wassserstein distance. http://arxiv.org/abs/1105.5263. Zbl1294.60005
  4. Bolley, F., Guillin, A., and Malrieu, F. Trend to equilibrium and particle approximation for a weakly selfconsistent Vlasov-Fokker-Planck equation. M2AN Math. Model. Numer. Anal. 44, 5 (2010), 867–884. Zbl1201.82029MR2731396
  5. Boltzmann, L. Weitere studien über das wärmegleichgewicht unter gasmolekülen. Sitzungsberichte der Akademie der Wissenschaften 66 (1872), 275–370. Translation: Further studies on the thermal equilibrium of gas molecules, in Kinetic Theory 2, 88–174, Ed. S.G. Brush, Pergamon, Oxford (1966). 
  6. Carleman, T. Sur la théorie de l’équation intégrodifférentielle de Boltzmann. Acta Math. 60, 1 (1933), 91–146. Zbl0006.40002MR1555365
  7. Carlen, E., Carvalho, M. C., and Loss, M. Spectral gap for the Kac model with hard collisions. http://arxiv.org/abs/1304.5124. Zbl1290.60100
  8. Carlen, E. A., Carvalho, M. C., Le Roux, J., Loss, M., and Villani, C. Entropy and chaos in the Kac model. Kinet. Relat. Models 3, 1 (2010), 85–122. Zbl1186.76675MR2580955
  9. Carlen, E. A., Carvalho, M. C., and Loss, M. Determination of the spectral gap for Kac’s master equation and related stochastic evolution. Acta Math. 191, 1 (2003), 1–54. Zbl1080.60091MR2020418
  10. Carlen, E. A., Gabetta, E., and Toscani, G. Propagation of smoothness and the rate of exponential convergence to equilibrium for a spatially homogeneous Maxwellian gas. Comm. Math. Phys. 199, 3 (1999), 521–546. Zbl0927.76088MR1669689
  11. Carlen, E. A., Geronimo, J. S., and Loss, M. Determination of the spectral gap in the Kac model for physical momentum and energy-conserving collisions. SIAM J. Math. Anal. 40, 1 (2008), 327–364. Zbl1163.82007MR2403324
  12. Carrapatoso, K. Propagation of chaos for the spatially homogeneous Landau equation for maxwellian molecules. http://hal.archives-ouvertes.fr/hal-00765621. Zbl1332.82075
  13. Carrapatoso, K. Quantitative and qualitative Kac’s chaos on the Boltzmann sphere. http://hal.archives-ouvertes.fr/hal-00694767. Zbl06489493
  14. Fournier, N., Hauray, M., and Mischler, S. Propagation of chaos for the 2d viscous vortex model. To appear in J. Eur. Math. Soc. Zbl1299.76040
  15. Fournier, N., and Méléard, S. Monte Carlo approximations and fluctuations for 2d Boltzmann equations without cutoff. Markov Process. Related Fields 7 (2001), 159–191. Zbl0972.60098MR1835755
  16. Fournier, N., and Méléard, S. A stochastic particle numerical method for 3d Boltzmann equation without cutoff. Math. Comp. 71 (2002), 583–604. Zbl0990.60085MR1885616
  17. Fournier, N., and Mischler, S. Rate of convergence of the Nanbu particle system for hard potentials. http://hal.archives-ouvertes.fr/hal-00793662. Zbl06571512
  18. Fournier, N., and Mouhot, C. On the well-posedness of the spatially homogeneous boltzmann equation with a moderate angular singularity. Comm. Math. Phys. 283, 3 (2009), 803–824. Zbl1175.76129MR2511651
  19. Grad, H. Principles of the kinetic theory of gases. In Handbuch der Physik (herausgegeben von S. Flügge), Bd. 12, Thermodynamik der Gase. Springer-Verlag, Berlin, 1958, pp. 205–294. MR135535
  20. Graham, C., and Méléard, S. Stochastic particle approximations for generalized Boltzmann models and convergence estimates. The Annals of Probability 25 (1997), 115–132. Zbl0873.60076MR1428502
  21. Grünbaum, F. A. Propagation of chaos for the Boltzmann equation. Arch. Rational Mech. Anal. 42 (1971), 323–345. Zbl0236.45011MR334788
  22. Hauray, M. Fisher information decay for the Boltzman-Kac system associtaed to maxwell molecules. Personnal communication. 
  23. Hauray, M., and Mischler, S. On Kac’s chaos and related problems, work in progress. Zbl06326909
  24. Janvresse, E. Spectral gap for Kac’s model of Boltzmann equation. Ann. Probab. 29, 1 (2001), 288–304. Zbl1034.82049MR1825150
  25. Kac, M. Foundations of kinetic theory. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III (Berkeley and Los Angeles, 1956), University of California Press, pp. 171–197. Zbl0072.42802MR84985
  26. Kolokoltsov, V. N.Nonlinear Markov processes and kinetic equations, vol. 182 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2010. Zbl1222.60003MR2680971
  27. Lanford, III, O. E. Time evolution of large classical systems. In Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974). Springer, Berlin, 1975, pp. 1–111. Lecture Notes in Phys., Vol. 38. Zbl0329.70011MR479206
  28. Lu, X., and Mouhot, C. On measure solutions of the Boltzmann equation, Part II: Rate of convergence to equilibrium. http://arxiv.org/abs/1306.0764. Zbl1311.35181
  29. Maslen, D. K. The eigenvalues of Kac’s master equation. Math. Z. 243, 2 (2003), 291–331. Zbl1016.82016MR1961868
  30. Maxwell, J. C. On the dynamical theory of gases. Philos. Trans. Roy. Soc. London Ser. A 157 (1867), 49–88. 
  31. McKean, H. P. The central limit theorem for Carleman’s equation. Israel J. Math. 21, 1 (1975), 54–92. Zbl0315.60013MR423553
  32. McKean, Jr., H. P. An exponential formula for solving Boltmann’s equation for a Maxwellian gas. J. Combinatorial Theory 2 (1967), 358–382. Zbl0152.46501MR224348
  33. Mischler, S., and Mouhot, C. Kac’s program in kinetic theory. Invent. Math. 193, 1 (2013), 1–147. Zbl1274.82048MR3069113
  34. Mischler, S., Mouhot, C., and Wennberg, B. A new approach to quantitative chaos propagation for drift, diffusion and jump processes. To appear in Probab. Theory Related Fields, http://hal.archives-ouvertes.fr/hal-00559132. Zbl1333.60174
  35. Otto, F., and Villani, C. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173, 2 (2000), 361–400. Zbl0985.58019MR1760620
  36. Peyre, R. Some ideas about quantitative convergence of collision models to their mean field limit. J. Stat. Phys. 136, 6 (2009), 1105–1130. Zbl1180.82151MR2550398
  37. Sznitman, A.-S. Équations de type de Boltzmann, spatialement homogènes. Z. Wahrsch. Verw. Gebiete 66, 4 (1984), 559–592. Zbl0553.60069MR753814
  38. Sznitman, A.-S. Topics in propagation of chaos. In École d’Été de Probabilités de Saint-Flour XIX—1989, vol. 1464 of Lecture Notes in Math. Springer, Berlin, 1991, pp. 165–251. Zbl0732.60114MR1108185
  39. Tanaka, H. Probabilistic treatment of the Boltzmann equation of Maxwellian molecules. Z. Wahrsch. Verw. Gebiete 46, 1 (1978/79), 67–105. Zbl0389.60079MR512334
  40. Tanaka, H. Some probabilistic problems in the spatially homogeneous Boltzmann equation. In Theory and application of random fields (Bangalore, 1982), vol. 49 of Lecture Notes in Control and Inform. Sci. Springer, Berlin, 1983, pp. 258–267. Zbl0514.60063MR799949
  41. Toscani, G., and Villani, C. Probability metrics and uniqueness of the solution to the Boltzmann equation for a Maxwell gas. J. Statist. Phys. 94, 3-4 (1999), 619–637. Zbl0958.82044MR1675367
  42. Villani, C. Fisher information estimates for Boltzmann’s collision operator. J. Math. Pures Appl. (9) 77, 8 (1998), 821–837. Zbl0918.60093MR1646804
  43. Villani, C. Cercignani’s conjecture is sometimes true and always almost true. Comm. Math. Phys. 234, 3 (2003), 455–490. Zbl1041.82018MR1964379

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.