A note on the weighted Khintchine-Groshev Theorem
Mumtaz Hussain[1]; Tatiana Yusupova[2]
- [1] School of Mathematical and Physical Sciences The University of Newcastle Callaghan, NSW 2308, Australia
- [2] Department of Mathematics University of York Heslington,York, YO105DD, UK
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 2, page 385-397
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topHussain, Mumtaz, and Yusupova, Tatiana. "A note on the weighted Khintchine-Groshev Theorem." Journal de Théorie des Nombres de Bordeaux 26.2 (2014): 385-397. <http://eudml.org/doc/275762>.
@article{Hussain2014,
abstract = {Let $W(m, n; \underline\{\psi \})$ denote the set of $\psi _1,\ldots ,\psi _n$–approximable points in $\mathbb\{R\}^\{mn\}$. The classical Khintchine–Groshev theorem assumes a monotonicity condition on the approximating functions $\underline\{\psi \}$. Removing monotonicity from the Khintchine–Groshev theorem is attributed to different authors for different cases of $m$ and $n$. It can not be removed for $m=n=1$ as Duffin–Schaeffer provided the counter example. We deal with the only remaining case $m=2$ and thereby remove all unnecessary conditions from the Khintchine–Groshev theorem.},
affiliation = {School of Mathematical and Physical Sciences The University of Newcastle Callaghan, NSW 2308, Australia; Department of Mathematics University of York Heslington,York, YO105DD, UK},
author = {Hussain, Mumtaz, Yusupova, Tatiana},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Diophantine approximation; systems of linear forms; Khintchine–Groshev theorem; Khintchine-Groshev theorem},
language = {eng},
month = {10},
number = {2},
pages = {385-397},
publisher = {Société Arithmétique de Bordeaux},
title = {A note on the weighted Khintchine-Groshev Theorem},
url = {http://eudml.org/doc/275762},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Hussain, Mumtaz
AU - Yusupova, Tatiana
TI - A note on the weighted Khintchine-Groshev Theorem
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/10//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 2
SP - 385
EP - 397
AB - Let $W(m, n; \underline{\psi })$ denote the set of $\psi _1,\ldots ,\psi _n$–approximable points in $\mathbb{R}^{mn}$. The classical Khintchine–Groshev theorem assumes a monotonicity condition on the approximating functions $\underline{\psi }$. Removing monotonicity from the Khintchine–Groshev theorem is attributed to different authors for different cases of $m$ and $n$. It can not be removed for $m=n=1$ as Duffin–Schaeffer provided the counter example. We deal with the only remaining case $m=2$ and thereby remove all unnecessary conditions from the Khintchine–Groshev theorem.
LA - eng
KW - Diophantine approximation; systems of linear forms; Khintchine–Groshev theorem; Khintchine-Groshev theorem
UR - http://eudml.org/doc/275762
ER -
References
top- V. Beresnevich, V. Bernik, M. Dodson and S. Velani, Classical metric Diophantine approximation revisited in Analytic number theory, (2009) Cambridge Univ. Press, 38–61. Zbl1236.11064MR2508636
- V. Beresnevich, D. Dickinson and S. Velani, Measure theoretic laws for lim sup sets, Mem. Amer. Math. Soc., 179(846), (2006), x+91. Zbl1129.11031MR2184760
- V. Beresnevich, A. Haynes and S. Velani, Multiplicative zero-one laws and metric number theory, Acta Arith., 160,2 , (2013), 101–114. Zbl1292.11085MR3105329
- V. Beresnevich and S. Velani, A mass transference principle and the Duffin-Schaeffer conjecture for Hausdorff measures, Ann. of Math.(2), 164,3, (2006), 971–992. Zbl1148.11033MR2259250
- V. Beresnevich and S. Velani, Schmidt’s theorem, Hausdorff measures, and slicing, Int. Math. Res. Not., 24, (2006), Art. ID 48794. Zbl1111.11037MR2264714
- V. Beresnevich and S. Velani, A note on zero-one laws in metrical Diophantine approximation, Acta Arith., 133, 4, (2008), 363–374. Zbl1229.11102MR2457266
- V. Beresnevich and S. Velani, Classical metric Diophantine approximation revisited: the Khintchine-Groshev theorem, Int. Math. Res. Not. IMRN, 1, (2010), 69–86. Zbl1241.11086MR2576284
- D. Dickinson and M. Hussain, The metric theory of mixed type linear forms, Int. J. Number Theory, 9, 1, (2013), 77–90. Zbl1269.11067MR2997491
- M. M. Dodson, Geometric and probabilistic ideas in the metric theory of Diophantine approximations, Uspekhi Mat. Nauk, 48, 5 (293), (1993), 77–106. Zbl0831.11039MR1258756
- R. J. Duffin and A. C. Schaeffer, Khintchine’s problem in metric Diophantine approximation, Duke Math. J., 8, (1941), 243–255. Zbl0025.11002MR4859
- A. V. Groshev, Un théoreme sur les systèmes des formes lineaires, Doklady Akad. Nauk SSSR., 19, (1938), 151–152. Zbl0019.05104
- G. Harman, Metric number theory, London Mathematical Society Monographs New Series, The Clarendon Press Oxford University Press, New York, 18, (1998). Zbl1081.11057MR1672558
- M. Hussain and S. Kristensen, Metrical results on systems of small linear forms, Int. J. of Number theory, 9, 3, (2013), 769–782. Zbl1311.11074MR3043613
- M. Hussain and J. Levesley, The metrical theory of simultaneously small linear forms, Funct. Approx. Comment. Math., 48, 2, (2013), 167–181. Zbl1311.11075MR3100138
- A. Khintchine, Zur metrischen theorie der diophantischen approximationen, Math. Zeitschr., 24, 1, (1926), 706–714. Zbl52.0183.02MR1544787
- A. Khintchine, Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen, Math. Ann., 92, 1-2, (1924), 115–125. MR1512207
- L. Li, Zero-one laws in simultaneous and multiplicative diophantine approximation, Mathematika, 59, 2, (2013), 321–332. Zbl06193343MR3081774
- V. G. Sprindžuk, Metric theory of Diophantine approximations, V. H. Winston & Sons, Washington, D.C. Translated from the Russian and edited by Richard A. Silverman, With a foreword by Donald J. Newman, Scripta Series in Mathematics, (1979). MR548467
- T. Yusupova, Problems in metric Diophantine approximations, D. Phil thesis. University of York, U. K., (2011).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.