30 Years of Calderón’s Problem
- [1] Department of Mathematics University of Washington Seattle, WA 98195 USA Fondation de Sciences Mathématiques de Paris
Séminaire Laurent Schwartz — EDP et applications (2012-2013)
- Volume: 2012-2013, page 1-25
- ISSN: 2266-0607
Access Full Article
topAbstract
topHow to cite
topUhlmann, Gunther. "30 Years of Calderón’s Problem." Séminaire Laurent Schwartz — EDP et applications 2012-2013 (2012-2013): 1-25. <http://eudml.org/doc/275764>.
@article{Uhlmann2012-2013,
abstract = {In this article we survey some of the most important developments since the 1980 paper of A.P. Calderón in which he proposed the problem of determining the conductivity of a medium by making voltage and current measurements at the boundary.},
affiliation = {Department of Mathematics University of Washington Seattle, WA 98195 USA Fondation de Sciences Mathématiques de Paris},
author = {Uhlmann, Gunther},
journal = {Séminaire Laurent Schwartz — EDP et applications},
keywords = {inverse problem; Dirichlet-to-Neumann map; complex geometrical optics},
language = {eng},
pages = {1-25},
publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},
title = {30 Years of Calderón’s Problem},
url = {http://eudml.org/doc/275764},
volume = {2012-2013},
year = {2012-2013},
}
TY - JOUR
AU - Uhlmann, Gunther
TI - 30 Years of Calderón’s Problem
JO - Séminaire Laurent Schwartz — EDP et applications
PY - 2012-2013
PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
VL - 2012-2013
SP - 1
EP - 25
AB - In this article we survey some of the most important developments since the 1980 paper of A.P. Calderón in which he proposed the problem of determining the conductivity of a medium by making voltage and current measurements at the boundary.
LA - eng
KW - inverse problem; Dirichlet-to-Neumann map; complex geometrical optics
UR - http://eudml.org/doc/275764
ER -
References
top- Albin, P, Guillarmou, C., Tzou, L. and Uhlmann, G., Inverse boundary problems for systems in two dimensions, to appear Annales Institut Henri Poincaré. Zbl1310.81052
- Alessandrini, G., Stable determination of conductivity by boundary measurements, App. Anal., 27 (1988), 153–172. Zbl0616.35082MR922775
- Alessandrini, G., Singular solutions of elliptic equations and the determination of conductivity by boundary measurements, J. Diff. Equations, 84 (1990), 252-272. Zbl0778.35109MR1047569
- Alessandrini, G. and Vessella, S., Lipschitz stability for the inverse conductivity problem, Adv. in Appl. Math., 35 (2005), 207–241. Zbl1095.35058MR2152888
- Ammari, H. and Uhlmann, G., Reconstruction of the potential from partial Cauchy data for the Schrödinger equation, Indiana Univ. Math. J., 53 (2004), 169-183. Zbl1051.35103MR2048188
- Astala, K. and Päivärinta, L., Calderón’s inverse conductivity problem in the plane. Annals of Math., 163 (2006), 265-299. Zbl1111.35004MR2195135
- Astala, K., Lassas, M. and Päiväirinta, L., Calderón’s inverse problem for anisotropic conductivity in the plane, Comm. Partial Diff. Eqns., 30 (2005), 207–224. Zbl1129.35483MR2131051
- Bal, G., Ren, K., Uhlmann, G, and Zhou, T., Quantitative thermo-acoustics and related problems, Inverse Problems, 27 (2011), 055007. Zbl1217.35207MR2793826
- Bal, G. and Uhlmann, G., Inverse diffusion theory of photoacoustics, Inverse Problems, 26 (2010), 085010. Zbl1197.35311MR2658827
- Bal, G. and Uhlmann, G., Reconstructions for some coupled-physics inverse problems, Applied Mathematics Letters, 25 (2012), 1030-1033. Zbl1252.65185MR2915119
- Bal, G. and Uhlmann, G., Reconstructions of coefficients in scalar second-order elliptic equations from knowledge of their solutions, to appear Comm. Pure Appl. Math. Zbl1273.35308
- Barceló, B., Barceló, J.A., and Ruiz, A., Stability of the inverse conductivity problem in the plane for less regular conductivities, J. Differential Equations, 173 (2001), 231-270. Zbl0986.35126MR1834116
- Barceló, J.A., Faraco, D. and Ruiz, A., Stability of Calderón’s inverse problem in the plane, Journal des Mathématiques Pures et Appliquées, 88 (2007), 522-556. Zbl1133.35104MR2373740
- Belishev, M. I., The Calderón problem for two-dimensional manifolds by the BC-method, SIAM J. Math. Anal., 35 (2003), 172–182. Zbl1048.58019MR2001471
- Blaasten, E, Stability and uniqueness for the inverse problem of the Schrödinger equation with potentials in , arXiv:1106.0632.
- Brown, R., Recovering the conductivity at the boundary from the Dirichlet to Neumann map: a pointwise result, J. Inverse Ill-Posed Probl., 9 (2001), 567–574. Zbl0991.35104MR1881563
- Brown, R. and Torres, R., Uniqueness in the inverse conductivity problem for conductivities with derivatives in J. Fourier Analysis Appl., 9 (2003), 1049-1056. Zbl1051.35105
- Brown, R. and Uhlmann, G., Uniqueness in the inverse conductivity problem with less regular conductivities in two dimensions, Comm. PDE, 22 (1997), 1009-10027. Zbl0884.35167MR1452176
- Bukhgeim, A., Recovering the potential from Cauchy data in two dimensions, J. Inverse Ill-Posed Probl., 16 (2008), 19-34. Zbl1142.30018MR2387648
- Bukhgeim, A. and Uhlmann, G., Recovering a potential from partial Cauchy data, Comm. PDE, 27 (2002), 653-668. Zbl0998.35063MR1900557
- Calderón, A. P., On an inverse boundary value problem, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), pp. 65–73, Soc. Brasil. Mat., Rio de Janeiro, 1980. MR590275
- Calderón, A. P., Boundary value problems for elliptic equations. Outlines of the joint Soviet-American symposium on partial differential equations, 303-304, Novisibirsk (1963). MR203254
- Caro, P., Dos Santos Ferreira, D. and Ruiz, A., Stability estimates for the Radon transform with restricted data and applications, arXiv:1211.1887 (2012).
- Caro, P., Garcia, A. and Reyes, J.M., Stability of the Calderón problem for less regular conductivities, J. Differential Equations254 (2013), 469–492. Zbl1273.35311MR2990039
- Caro, P., Ola, P. and Salo, M., Inverse boundary value problem for Maxwell equations with local data, Comm. PDE, 34 (2009), 1425-1464. Zbl1185.35321MR2581979
- Caro, P. and Zhou, T., On global uniqueness for an IBVP for the time-harmonic Maxwell equations, to appear Anal PDE, arXiv:1210.7602. Zbl1293.35361
- Chanillo S., A problem in electrical prospection and a -dimensional Borg-Levinson theorem, Proc. AMS, 108 (1990), 761–767. Zbl0702.35035MR998731
- Chen, J. and Yang, Y., Quantitative photo-acoustic tomography with partial data, Inverse Problems, 28 (2012), 115014. Zbl1252.35278MR2997231
- Chung, F., A partial data result for the magnetic Schrödinger operator, preprint, arXiv:1111.6658.
- Dos Santos Ferreira, D., Kenig, C.E., Sjöstrand, J. and Uhlmann, G., Determining a magnetic Schrödinger operator from partial Cauchy data, Comm. Math. Phys., 271 (2007), 467–488. Zbl1148.35096MR2287913
- Dos Santos Ferreira, D., Kenig, C.E., Salo, M., and Uhlmann, G., Limiting Carleman weights and anisotropic inverse problems, Inventiones Math., 178 (2009), 119-171. Zbl1181.35327MR2534094
- Eskin, G., Ralston, J., On the inverse boundary value problem for linear isotropic elasticity, Inverse Problems, 18 (2002), 907–921. Zbl1080.35175MR1910209
- Francini, E., Recovering a complex coefficient in a planar domain from the Dirichlet-to-Neumann map, Inverse Problems, 16 (2000), 107–119. Zbl0968.35125MR1741230
- Garcia, A. and Zhang, G., Reconstruction from boundary measurements for less regular conductivities, preprint, arXiv:1212.0727.
- Greenleaf, A., Lassas, M. and Uhlmann, G., The Calderón problem for conormal potentials, I: Global uniqueness and reconstruction, Comm. Pure Appl. Math, 56 (2003), 328–352. Zbl1061.35165MR1941812
- Greenleaf, A., Lassas, M. and Uhlmann, G., Anisotropic conductivities that cannot be detected in EIT, Physiolog. Meas. (special issue on Impedance Tomography), 24 (2003), 413-420.
- Greenleaf, A., Lassas, M. and Uhlmann, G., On nonuniqueness for Calderón’s inverse problem, Math. Res. Lett., 10 (2003), 685-693. Zbl1054.35127MR2024725
- Greenleaf, A. and Uhlmann, G., Local uniqueness for the Dirichlet-to-Neumann map via the two-plane transform, Duke Math. J., 108 (2001), 599-617. Zbl1013.35085MR1838663
- Guillarmou, C. and Sá Barreto, A., Inverse problems for Einstein manifolds, Inverse Problems and Imaging, 3 (2009), 1-15. Zbl1229.58025MR2558301
- Guillarmou, C. and Tzou, L., Calderón inverse problem on Riemann surfaces, Proceedings of CMA, 44 (2009), 129-142. Volume for the AMSI/ANU workshop on Spectral Theory and Harmonic Analysis. Zbl1231.35302
- Guillarmou, C. and Tzou, L., Calderón inverse problem with partial data on Riemann surfaces, Duke Math. J., 158 (2011), 83-120. Zbl1222.35212MR2794369
- Guillarmou, C. and Tzou, L, Identification of a connection from Cauchy data space on a Riemann surface with boundary, Geometric and Functional Analysis (GAFA), 21 (2011), 393-418. Zbl1260.58011MR2795512
- Hähner, P., A periodic Faddeev-type solution operator, J. Differential Equations, 128 (1996), 300–308. Zbl0849.35022MR1392403
- Haberman, B. and Tataru, D., Uniqueness in Calderón’s problem with Lipschitz conductivities, to appear Duke Math. J. Zbl1260.35251
- Heck, H. and Wang, J.-N., Stability estimates for the inverse boundary value problem by partial Cauchy data, Inverse Problems, 22 (2006), 1787–1796. Zbl1106.35133MR2261266
- Henkin, G. and Michel, V., Inverse conductivity problem on Riemann surfaces, J. Geom. Anal., 18 (2008), 1033–1052. Zbl1151.35101MR2438910
- Ide, T., Isozaki, H., Nakata S., Siltanen, S. and Uhlmann, G., Probing for electrical inclusions with complex spherical waves, Comm. Pure and Applied Math., 60 (2007), 1415-1442. Zbl1142.35104MR2342953
- Ikehata, M., The enclosure method and its applications, Chapter 7 in “Analytic extension formulas and their applications" (Fukuoka, 1999/Kyoto, 2000), Int. Soc. Anal. Appl. Comput., Kluwer Acad. Pub., 9 (2001), 87-103. Zbl0988.35168MR1830379
- Imanuvilov, O., Uhlmann, G. and Yamamoto, M., The Calderón problem with partial data in two dimensions, Journal AMS, 23 (2010), 655-691. Zbl1201.35183MR2629983
- Imanuvilov, O., Uhlmann, G. and Yamamoto, M., On determination of second order operators from partial Cauchy data, Proceedings National Academy of Sciences., 108 (2011), 467-472. Zbl1256.35203MR2770947
- Imanuvilov, O., Uhlmann, G. and Yamamoto, M., Partial data for general second order elliptic operators in two dimensions, Publ. Research Insti. Math. Sci., 48 (2012), 971-1055. Zbl1260.35253MR2999548
- Imanuvilov, O., Uhlmann, G. and Yamamoto, M., Inverse boundary problem with Cauchy data on disjoint sets, Inverse Problems, 27 (2011), 085007. Zbl1222.35213MR2819949
- Imanuvilov, O., Uhlmann, G. and Yamamoto, M., On reconstruction of Lamé coefficients from partial Cauchy data in three dimensions, Inverse Problems, 28 (2012), 125002. Zbl1264.35281MR2997011
- Imanuvilov, O., Uhlmann, G. and Yamamoto, M., Inverse boundary value problem by partial data for the Neumann-to-Dirichlet map in two dimensions, preprint, arXiv:1210.1255. Zbl1321.35024
- Imanuvilov, O. and Yamamoto, M., Inverse boundary value for Schrödinger equation in two dimensions, arXiv:1211.1419v1. Zbl1273.35316
- Imanuvilov, O. and Yamamoto, M., Uniqueness for inverse boundary problems by Dirichlet-to-Neumann map on arbitrary subboundaries, preprint, arXiv:1303.2159. Zbl1291.35443MR2110612
- Isaacson, D., Newell, J. C., Goble, J. C. and Cheney M., Thoracic impedance images during ventilation, Annual Conference of the IEEE Engineering in Medicine and Biology Society, 12 (1990), 106–107.
- Isakov, V., On uniqueness in the inverse conductivity problem with local data, Inverse Problems and Imaging, 1 (2007), 95-105. Zbl1125.35113MR2262748
- Isakov, V., Nakamura, G., Uhlmann, G. and Wang, J.-N., Increasing stability of the inverse boundary problem for the Schröedinger equation, to appear Contemp. Math., arXiv:1302.0940.
- Isozaki, H., Inverse spectral problems on hyperbolic manifolds and their applications to inverse boundary value problems in Euclidean space, Amer. J. Math., 126 (2004), 1261–1313. Zbl1069.35092MR2102396
- Isozaki, H. and Uhlmann, G., Hyperbolic geometric and the local Dirichlet-to-Neumann map, Advances in Math.188 (2004), 294-314. Zbl1062.35172MR2087229
- Jordana, J., Gasulla, J. M. and Paola’s-Areny, R., Electrical resistance tomography to detect leaks from buried pipes, Meas. Sci. Technol., 12 (2001), 1061-1068.
- Jossinet, J., The impedivity of freshly excised human breast tissue, Physiol. Meas., 19 (1998), 61-75.
- Kenig, C. and Salo, M., The Calderón problem with partial data on manifolds and applications, preprint, arXiv:1211.1054. Zbl1335.35301
- Kenig, C. and Salo, M., Recent progress in the Calderón problem with partial data, preprint, arXiv:1302.4218. Zbl1330.35534
- Kenig, C., Salo, M. and Uhlmann, G., Inverse problems for the anisotropic Maxwell equations", Duke Math. J., 157 (2011), 369-419. Zbl1226.35086MR2783934
- Kenig, C., Sjöstrand, J. and Uhlmann, G., The Calderón problem with partial data, Annals of Math., 165 (2007), 567-591. Zbl1127.35079MR2299741
- Knudsen, K., The Calderón problem with partial data for less smooth conductivities, Comm. Partial Differential Equations, 31 (2006), 57–71. Zbl1091.35116MR2209749
- Knudsen, K. and Salo, M., Determining nonsmooth first order terms from partial boundary measurements, Inverse Problems and Imaging, 1 (2007), 349-369. Zbl1122.35152MR2282273
- Kocyigit, I., Acoustic-electric tomography and CGO solutions with internal data, Inverse Problems, 28 (2012), 125004. Zbl1266.78015MR2997013
- Kohn, R., Shen, H., Vogelius, M. and Weinstein, M., Cloaking via change of variables in Electrical Impedance Tomography, Inverse Problems24 (2008), 015016 (21pp). Zbl1153.35406MR2384775
- Kohn, R. and Vogelius, M., Identification of an unknown conductivity by means of measurements at the boundary, in Inverse Problems, SIAM-AMS Proc., 14 (1984). Zbl0573.35084MR773707
- Kohn, R. and Vogelius, M., Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37 (1984), 289–298. Zbl0586.35089MR739921
- Kohn, R. and Vogelius, M., Determining conductivity by boundary measurements II. Interior results, Comm. Pure Appl. Math., 38 (1985), 643–667. Zbl0595.35092MR803253
- Krupchyk, K., Lassas, M. and Uhlmann, G., Inverse problems for differential forms on Riemannian manifolds with boundary, Comm. PDE., 36 (2011), 1475-1509. Zbl1227.35245MR2825599
- Krupchyk, K., Lassas, M. and Uhlmann, G., Inverse problems with partial data for the magnetic Schrödinger operator in an infinite slab and on a bounded domain Comm. Math. Phys., 312 (2012), 87-126. Zbl1238.35188MR2914058
- Krupchyk, K., Lassas, M. and Uhlmann, G., Inverse boundary value problems for the polyharmonic operator, Journal Functional Analysis, 262 (2012), 1781-1801. Zbl1239.35184MR2873860
- Krupchyk, K., Lassas, M. and Uhlmann, G, Determining a first order perturbation of the biharmonic operator by partial boundary measurements, to appear Transactions AMS. Zbl1239.35184MR2873860
- Krupchyk, K., Uhlmann, G, Determining a magnetic Schrödinger operator with a bounded magnetic potential from boundary measurements, preprint, arXiv:1206.4727.
- Lassas, M. and Uhlmann, G., Determining a Riemannian manifold from boundary measurements, Ann. Sci. École Norm. Sup., 34 (2001), 771–787. Zbl0992.35120MR1862026
- Lassas, M., Taylor, M. and Uhlmann, G., The Dirichlet-to-Neumann map for complete Riemannian manifolds with boundary, Comm. Geom. Anal., 11 (2003), 207-222. Zbl1077.58012MR2014876
- Lee, J. and Uhlmann, G., Determining anisotropic real-analytic conductivities by boundary measurements, Comm. Pure Appl. Math., 42 (1989), 1097–1112. Zbl0702.35036MR1029119
- Li, X. and Uhlmann, G., Inverse problems on a slab, Inverse Problems and Imaging, 4 (2010), 449-462. Zbl1200.35331MR2671106
- Mandache, N., Exponential instability in an inverse problem for the Schrödinger equation, Inverse Problems, 17 (2001), 1435–1444. Zbl0985.35110MR1862200
- Nachman, A., Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), 71-96. Zbl0857.35135MR1370758
- Nachman, A., Reconstructions from boundary measurements, Ann. of Math., 128 (1988), 531–576. Zbl0675.35084MR970610
- Nachman, A. and Street, B., Reconstruction in the Calderón problem with partial data, Comm. PDE, 35 (2010), 375-390. Zbl1186.35242MR2748629
- Nagayasu, S., Uhlmann, G. and Wang, J.-N., Depth dependent stability estimate in electrical impedance tomography, Inverse Problems, 25 (2009), 075001. Zbl1172.35514MR2519853
- Nagayasu, S., Uhlmann, G. and Wang, J.-N., Reconstruction of penetrable obstacles in acoustics, SIAM J. Math. Anal., 43 (2011), 189-211. Zbl1234.35315MR2765688
- Nagayasu, S, Uhlmann, G. and Wang, J.-N., Increasing stability for the acoustic equation, Inverse Problems, 29 (2013), 020012. Zbl1302.65243
- Nakamura, G. and Tanuma, K., Local determination of conductivity at the boundary from the Dirichlet-to-Neumann map, Inverse Problems, 17 (2001), 405–419. Zbl0981.35100MR1843272
- Nakamura G. and Uhlmann, G., Global uniqueness for an inverse boundary value problem arising in elasticity, Invent. Math., 118 (1994), 457–474. Erratum: Invent. Math., 152 (2003), 205–207. Zbl0814.35147
- Nakamura, G., Sun, Z. and Uhlmann, G., Global identifiability for an inverse problem for the Schrödinger equation in a magnetic field, Math. Annalen, 303 (1995), 377–388. Zbl0843.35134MR1354996
- Novikov R. G., Multidimensional inverse spectral problems for the equation , Funktsionalny Analizi Ego Prilozheniya, 22 (1988), 11-12, Translation in Functional Analysis and its Applications, 22 (1988) 263–272. Zbl0689.35098MR976992
- Ola, P., Päivärinta, L. and Somersalo, E., An inverse boundary value problem in electrodynamics, Duke Math. J., 70 (1993), 617–653. Zbl0804.35152MR1224101
- Ola, P. and Somersalo, E. , Electromagnetic inverse problems and generalized Sommerfeld potentials, SIAM J. Appl. Math., 56 (1996), 1129-1145 Zbl0858.35138MR1398411
- Päivärinta, L., Panchenko, A. and Uhlmann, G., Complex geometrical optics for Lipschitz conductivities, Revista Matematica Iberoamericana, 19 (2003), 57-72. Zbl1055.35144MR1993415
- Pestov, L. and Uhlmann, G., Two dimensional simple Riemannian manifolds with boundary are boundary distance rigid,Annals of Math., 161 (2005), 1089-1106. Zbl1076.53044MR2153407
- Rondi, L., A remark on a paper by G. Alessandrini and S. Vessella: “Lipschitz stability for the inverse conductivity problem" [Adv. in Appl. Math. 35 (2005), 207–241], Adv. in Appl. Math., 36 (2006), 67–69. Zbl1158.35105MR2198854
- Salo, M., Semiclassical pseudodifferential calculus and the reconstruction of a magnetic field, Comm. PDE, 31 (2006), 1639-1666. Zbl1119.35119MR2273968
- Salo, M., Inverse problems for nonsmooth first order perturbations of the Laplacian, Ann. Acad. Sci. Fenn. Math. Diss., 139 (2004), 67 pp. Zbl1059.35175MR2105191
- Salo, M. and Tzou, L., Inverse problems with partial data for a Dirac system: a Carleman estimate approach, Advances in Math., 225 (2010), 487-513. Zbl1197.35329MR2669360
- Salo, M. and Wang, J.-N. , Complex spherical waves and inverse problems in unbounded domains, Inverse Problems22 (2006), 2299–2309. Zbl1106.35140MR2277543
- Siltanen, S., Müller, J. L. and Isaacson, D., A direct reconstruction algorithm for electrical impedance tomography, IEEE Transactions on Medical Imaging, 21 (2002), 555-559.
- Somersalo, E., Isaacson, D. and Cheney, M., A linearized inverse boundary value problem for Maxwell’s equations, Journal of Comp. and Appl. Math., 42 (1992),123-136. Zbl0757.65128MR1181585
- Sun, Z. and Uhlmann, G., Anisotropic inverse problems in two dimensions, Inverse Problems, 19 (2003), 1001-1010. Zbl1054.35139MR2024685
- Sun, Z. and Uhlmann, G., Generic uniqueness for an inverse boundary value problem, Duke Math. Journal, 62 (1991), 131–155. Zbl0728.35132MR1104326
- Sylvester, J., An anisotropic inverse boundary value problem, Comm. Pure Appl. Math., 43 (1990), 201–232. Zbl0709.35102MR1038142
- Sylvester, J. and Uhlmann, G., A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153–169. Zbl0625.35078MR873380
- Sylvester, J. and Uhlmann, G., A uniqueness theorem for an inverse boundary value problem in electrical prospection, Comm. Pure Appl. Math., 39 (1986), 92–112. Zbl0611.35088MR820341
- Sylvester, J. and Uhlmann, G., Inverse boundary value problems at the boundary – continuous dependence, Comm. Pure Appl. Math., 41 (1988), 197–221. Zbl0632.35074MR924684
- Sylvester, J. and Uhlmann, G., Inverse problems in anisotropic media, Contemp. Math., 122 (1991), 105–117. Zbl0748.35057MR1135861
- Takuwa, H., Uhlmann, G. and Wang, J.-N., Complex geometrical optics solutions for anisotropic equations and applications, Journal of Inverse and Ill Posed Problems, 16 (2008), 791-804. 29 (1998), 116–133. Zbl1152.35519MR2484149
- Tzou, L., Stability estimates for coefficients of magnetic Schrödinger equation from full and partial measurements, Comm. PDE, 33 (2008), 161-184. Zbl1157.35108MR2475324
- Uhlmann, G., Calderón’s problem and electrical impedance tomography, Inverse Problems, 25th Anniversary Volume, 25 (2009), 123011 (39pp.) Zbl1181.35339
- Uhlmann, G., Editor of Inside Out II: Inverse Problems and Applications, MSRI Publications 60, Cambridge University Press (2012). Zbl1277.65002
- Uhlmann, G., Developments in inverse problems since Calderón’s foundational paper, Chapter 19 in “Harmonic Analysis and Partial Differential Equations", University of Chicago Press (1999), 295-345, edited by M. Christ, C. Kenig and C. Sadosky. Zbl0963.35203MR1743870
- Uhlmann, G. and Wang, J.-N., Complex spherical waves for the elasticity system and probing of inclusions, SIAM J. Math. Anal., 38 (2007), 1967–1980. Zbl1131.35088MR2299437
- Uhlmann, G. and Wang, J.-N., Reconstruction of discontinuities in systems, SIAM J. Appl. Math., 28 (2008), 1026-1044. Zbl1146.35097MR2390978
- Uhlmann, G., Wang, J.-N and Wu, C. T., Reconstruction of inclusions in an elastic body, Journal de Mathématiques Pures et Appliquées, 91 (2009), 569-582. Zbl1173.35123MR2531555
- Zhdanov, M. S. Keller, G. V., The geoelectrical methods in geophysical exploration, Methods in Geochemistry and Geophysics, 31 (1994), Elsevier.
- Zhou, T., Reconstructing electromagnetic obstacles by the enclosure method, Inverse Problems and Imaging, 4 (2010), 547-569. Zbl1206.35262MR2671111
- Zou, Y. and Guo, Z, A review of electrical impedance techniques for breast cancer detection, Med. Eng. Phys., 25 (2003), 79-90.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.