On classifying Laguerre polynomials which have Galois group the alternating group

Pradipto Banerjee[1]; Michael Filaseta[2]; Carrie E. Finch[3]; J. Russell Leidy[2]

  • [1] Indian Statistical Institute Stat-Math Unit 203 Barrackpore Trunk Road Kolkata 700108, India
  • [2] University of South Carolina Department of Mathematics 1523 Greene Street Columbia, SC 29208, USA
  • [3] Washington and Lee University Mathematics Department Robinson Hall Lexington VA 24450, USA

Journal de Théorie des Nombres de Bordeaux (2013)

  • Volume: 25, Issue: 1, page 1-30
  • ISSN: 1246-7405

Abstract

top
We show that the discriminant of the generalized Laguerre polynomial L n ( α ) ( x ) is a non-zero square for some integer pair ( n , α ) , with n 1 , if and only if ( n , α ) belongs to one of 30 explicitly given infinite sets of pairs or to an additional finite set of pairs. As a consequence, we obtain new information on when the Galois group of L n ( α ) ( x ) over is the alternating group A n . For example, we establish that for all but finitely many positive integers n 2 ( mod 4 ) , the only α for which the Galois group of L n ( α ) ( x ) over is A n is α = n .

How to cite

top

Banerjee, Pradipto, et al. "On classifying Laguerre polynomials which have Galois group the alternating group." Journal de Théorie des Nombres de Bordeaux 25.1 (2013): 1-30. <http://eudml.org/doc/275766>.

@article{Banerjee2013,
abstract = {We show that the discriminant of the generalized Laguerre polynomial $L_\{n\}^\{(\alpha )\}(x)$ is a non-zero square for some integer pair $(n,\alpha )$, with $n \ge 1$, if and only if $(n,\alpha )$ belongs to one of $30$ explicitly given infinite sets of pairs or to an additional finite set of pairs. As a consequence, we obtain new information on when the Galois group of $L_\{n\}^\{(\alpha )\}(x)$ over $\mathbb\{Q\}$ is the alternating group $A_\{n\}$. For example, we establish that for all but finitely many positive integers $n \equiv 2 \hspace\{4.44443pt\}(\@mod \; 4)$, the only $\alpha $ for which the Galois group of $L_\{n\}^\{(\alpha )\}(x)$ over $\mathbb\{Q\}$ is $A_\{n\}$ is $\alpha = n$.},
affiliation = {Indian Statistical Institute Stat-Math Unit 203 Barrackpore Trunk Road Kolkata 700108, India; University of South Carolina Department of Mathematics 1523 Greene Street Columbia, SC 29208, USA; Washington and Lee University Mathematics Department Robinson Hall Lexington VA 24450, USA; University of South Carolina Department of Mathematics 1523 Greene Street Columbia, SC 29208, USA},
author = {Banerjee, Pradipto, Filaseta, Michael, Finch, Carrie E., Leidy, J. Russell},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Generalized Laguerre polynomials; discriminants; generalized Laguerre polynomials},
language = {eng},
month = {4},
number = {1},
pages = {1-30},
publisher = {Société Arithmétique de Bordeaux},
title = {On classifying Laguerre polynomials which have Galois group the alternating group},
url = {http://eudml.org/doc/275766},
volume = {25},
year = {2013},
}

TY - JOUR
AU - Banerjee, Pradipto
AU - Filaseta, Michael
AU - Finch, Carrie E.
AU - Leidy, J. Russell
TI - On classifying Laguerre polynomials which have Galois group the alternating group
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2013/4//
PB - Société Arithmétique de Bordeaux
VL - 25
IS - 1
SP - 1
EP - 30
AB - We show that the discriminant of the generalized Laguerre polynomial $L_{n}^{(\alpha )}(x)$ is a non-zero square for some integer pair $(n,\alpha )$, with $n \ge 1$, if and only if $(n,\alpha )$ belongs to one of $30$ explicitly given infinite sets of pairs or to an additional finite set of pairs. As a consequence, we obtain new information on when the Galois group of $L_{n}^{(\alpha )}(x)$ over $\mathbb{Q}$ is the alternating group $A_{n}$. For example, we establish that for all but finitely many positive integers $n \equiv 2 \hspace{4.44443pt}(\@mod \; 4)$, the only $\alpha $ for which the Galois group of $L_{n}^{(\alpha )}(x)$ over $\mathbb{Q}$ is $A_{n}$ is $\alpha = n$.
LA - eng
KW - Generalized Laguerre polynomials; discriminants; generalized Laguerre polynomials
UR - http://eudml.org/doc/275766
ER -

References

top
  1. M.  A. Bennett, M. Filaseta and O. Trifonov, On the factorization of consecutive integers. Journal für die reine und angewandte Mathematik (Crelle’s Journal) 629 (2009), 171–200. Zbl1223.11040MR2527417
  2. R. F. Coleman, On the Galois groups of the exponential Taylor polynomials. Ensein. Math. (2) 33 (1987), no. 3-4, 183–189. Zbl0672.12004MR925984
  3. M. Filaseta, C. E. Finch and J R. Leidy, T. N. Shorey’s influence in the theory of irreducible polynomials. Diophantine Equations (ed. N. Saradha), Narosa Publ. House, New Delhi, 2008, pp. 77–102. Zbl1194.11033MR2518470
  4. M. Filaseta, S. Laishram and N. Saradha, Solving n ( n + d ) ( n + ( k - 1 ) d ) = b y 2 with P ( b ) C k . International Journal of Number Theory 8 (2012), 161–173. Zbl1268.11045MR2887888
  5. M. Filaseta and T. Y. Lam, On the irreducibility of generalized Laguerre polynomials. Acta Arith. 105 (2002), 177–182. Zbl1010.12001MR1932764
  6. M. Filaseta, T. Kidd and O. Trifonov, Laguerre Polynomials with Galois group A m for each m . Journal of Number Theory 132 (2012), 776–805. Zbl1287.11123MR2887618
  7. M. Filaseta and R. L. Williams Jr., On the irreducibility of a certain class of Laguerre polynomials. J. Number Theory 100 (2003), 229–250. Zbl1019.11006MR1978454
  8. M. Filaseta and O. Trifonov, The Irreducibility of the Bessel polynomials. J. Reine Angew. Math. 550 (2002), 125–140. Zbl1022.11053MR1925910
  9. R. Gow, Some generalized Laguerre polynomials whose Galois groups are the alternating groups. J. Number Theory 31 (1989), 201–207. Zbl0693.12009MR987573
  10. E. Grosswald, Bessel Polynomials. Lecture Notes in Math. 698, Springer, Berlin, 1978. Zbl0416.33008MR520397
  11. F. Hajir, Some A n -extensions obtained from generalized Laguerre polynomials. J. Number Theory 50 (1995), 206–212. Zbl0829.12004MR1316816
  12. F. Hajir, Algebraic properties of a family of generalized Laguerre polynomials. Canad. J. Math. 61 (2009), no. 3, 583–603. Zbl1255.33006MR2514486
  13. F. Hajir, On the Galois group of generalized Laguerre polynomials. J. Théor. Nombres Bordeaux 17 (2005), no. 2, 517–525. Zbl1094.11042MR2211305
  14. F. Hajir and S. Wong, Specializations of one parameter family of polynomials. Ann. Inst. Fourier (Grenoble) 56 (2006), no. 4, 1127–1163. Zbl1160.12004MR2266886
  15. H. Harborth and A. Kemnitz, Calculations for Bertrand’s postulate. Math. Mag. 54 (1981), no. 1, 33–34. Zbl0453.10006MR605278
  16. D. Hilbert, Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten. J. reine angew. Math. 110 (1892), 104–129. Zbl24.0087.03
  17. S. Laishram and T. N. Shorey, Irreducibility of generalized Hermite-Laguerre polynomials, II. Indag. Math. (N.S.) 20 (2009), no. 3, 427–434. Zbl1196.33009MR2639981
  18. S. Laishram and T. N. Shorey, Number of prime divisors in a product of terms of an arithmetic progression. Indag. Math. (N.S.) 15 (2004), 505–521. Zbl1142.11356MR2114934
  19. B. H. Matzat, Konstruktive Galoistheorie. Lecture Notes in Math. 1284, Springer-Verlag, Berlin, 1987. Zbl0634.12011MR1004467
  20. I. Schur, Einige Sätze über Primzahlen mit Anwendungen auf Irreduzibilitätsfragen, I. Sitzungsber. Preuss. Akad. Wiss. Berlin Phys.-Math. Kl. 14 (1929), 125–136. 
  21. I. Schur, Gleichungen ohne Affekt. Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physikalisch-Mathematische Klasse (1930), 443–449. 
  22. I. Schur, Affectlose Gleichungen in der Theorie der Laguerreschen und Hermiteschen Polynome. Journal für die reine und angewandte Mathematik 165 (1931), 52–58. Zbl0002.11501
  23. E. A. Sell, On a certain family of generalized Laguerre polynomials. J. Number Theory 107 (2004), no. 2, 266–281. Zbl1053.11083MR2072388
  24. T. N. Shorey and R. Tijdeman, Generalizations of some irreducibility results by Schur. Acta Arith. 145 (2010), no. 4, 341–371. Zbl1208.12003MR2738152

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.