On the Galois group of generalized Laguerre polynomials

Farshid Hajir[1]

  • [1] Department of Mathematics & Statistics University of Massachusetts Amherst, MA 01003-9318 USA

Journal de Théorie des Nombres de Bordeaux (2005)

  • Volume: 17, Issue: 2, page 517-525
  • ISSN: 1246-7405

Abstract

top
Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed α - < 0 , Filaseta and Lam have shown that the n th degree Generalized Laguerre Polynomial L n ( α ) ( x ) = j = 0 n n + α n - j ( - x ) j / j ! is irreducible for all large enough n . We use our criterion to show that, under these conditions, the Galois group of L n ( α ) ( x ) is either the alternating or symmetric group on n letters, generalizing results of Schur for α = 0 , 1 , ± 1 2 , - 1 - n .

How to cite

top

Hajir, Farshid. "On the Galois group of generalized Laguerre polynomials." Journal de Théorie des Nombres de Bordeaux 17.2 (2005): 517-525. <http://eudml.org/doc/249418>.

@article{Hajir2005,
abstract = {Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed $\alpha \in \mathbb\{Q\}- \mathbb\{Z\}_\{&lt;0\}$, Filaseta and Lam have shown that the $n$th degree Generalized Laguerre Polynomial $L_n^\{(\alpha )\}(x) = \sum _\{j=0\}^n \binom\{n+\alpha \}\{n-j\}(-x)^j/j!$ is irreducible for all large enough $n$. We use our criterion to show that, under these conditions, the Galois group of $L_n^\{(\alpha )\}(x)$ is either the alternating or symmetric group on $n$ letters, generalizing results of Schur for $\alpha =0,1,\pm \frac\{1\}\{2\}, -1-n$.},
affiliation = {Department of Mathematics & Statistics University of Massachusetts Amherst, MA 01003-9318 USA},
author = {Hajir, Farshid},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Galois group; Generalized Laguerre Polynomial; Newton Polygon; Newton polygons},
language = {eng},
number = {2},
pages = {517-525},
publisher = {Université Bordeaux 1},
title = {On the Galois group of generalized Laguerre polynomials},
url = {http://eudml.org/doc/249418},
volume = {17},
year = {2005},
}

TY - JOUR
AU - Hajir, Farshid
TI - On the Galois group of generalized Laguerre polynomials
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 2
SP - 517
EP - 525
AB - Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed $\alpha \in \mathbb{Q}- \mathbb{Z}_{&lt;0}$, Filaseta and Lam have shown that the $n$th degree Generalized Laguerre Polynomial $L_n^{(\alpha )}(x) = \sum _{j=0}^n \binom{n+\alpha }{n-j}(-x)^j/j!$ is irreducible for all large enough $n$. We use our criterion to show that, under these conditions, the Galois group of $L_n^{(\alpha )}(x)$ is either the alternating or symmetric group on $n$ letters, generalizing results of Schur for $\alpha =0,1,\pm \frac{1}{2}, -1-n$.
LA - eng
KW - Galois group; Generalized Laguerre Polynomial; Newton Polygon; Newton polygons
UR - http://eudml.org/doc/249418
ER -

References

top
  1. N. H. Abel, Oeuvres Complètes. Tome 2, Grondahl & Son, Christiania, 1881. 
  2. R. F. Coleman, On the Galois groups of the exponential Taylor polynomials. Enseign. Math. (2) 33 (1987), no. 3-4, 183–189. Zbl0672.12004MR925984
  3. W. Feit, A ˜ 5 and A ˜ 7 are Galois groups over number fields. J. Algebra 104 (1986), no. 2, 231–260. Zbl0609.12005MR866773
  4. M. Filaseta, T.-Y. Lam, On the irreducibility of the Generalized Laguerre polynomials. Acta Arith. 105 (2002), no. 2, 177–182. Zbl1010.12001MR1932764
  5. M. Filaseta, R. L. Williams, Jr., On the irreducibility of a certain class of Laguerre polynomials. J. Number Theory 100 (2003), no. 2, 229–250. Zbl1019.11006MR1978454
  6. P. X. Gallagher, The large sieve and probabilistic Galois theory, in Analytic number theory. (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 91–101. Amer. Math. Soc., Providence, R.I., 1973. Zbl0279.10036MR332694
  7. S. Gao, Absolute irreducibility of polynomials via Newton polytopes. J. Algebra 237 (2001), no. 2, 501–520. Zbl0997.12001MR1816701
  8. F. Q. Gouvêa, p -adic numbers. Second edition, Springer, Berlin, 1997. Zbl0874.11002MR1488696
  9. R. Gow, Some Generalized Laguerre polynomials whose Galois groups are the Alternating groups. J. Number Theory 31 (1989), no. 2, 201–207. Zbl0693.12009MR987573
  10. F. Hajir, Some A n ˜ -extensions obtained from Generalized Laguerre polynomials. J. Number Theory 50 (1995), no. 2, 206–212. Zbl0829.12004MR1316816
  11. F. Hajir, Algebraic properties of a family of Generalized Laguerre Polynomials. Preprint, 2004, 19pp. Zbl1255.33006
  12. F. Hajir, S. Wong, Specializations of one-parameter families of polynomials. Ann. Inst. Fourier (Grenoble), to appear, 26pp. Zbl1160.12004MR2266886
  13. M. Hall, The theory of groups. Macmillan, 1959. Zbl0084.02202MR103215
  14. C. Jordan, Sur la limite de transitivité des groupes non alternés. Bull. Soc. Math. France, 1 (1872-3), 40–71. Zbl07.0073.02MR1503635
  15. M. Kölle, P. Schmid, Computing Galois groups by means of Newton polygons. Acta Arith. 115 (2004), no. 1, 71–84. Zbl1071.11066MR2102807
  16. T. Kondo, Algebraic number fields with the discriminant equal to that of a quadratic number field. J. Math. Soc. Japan 47 (1995), no. 1, 31–36. Zbl0865.11074MR1304187
  17. E. Laguerre, Sur l’intégrale 0 e - x d x x . Bull. Soc. math. France 7 (1879) 72–81. Reprinted in Oeuvres, Vol. 1. New York: Chelsea, 428–437, 1971. Zbl11.0214.03
  18. B. H. Matzat, J. McKay, K. Yokoyama, Algorithmic methods in Galois theory. J. Symbolic Comput. 30 (2000), no. 6. Academic Press, Oxford, 2000. pp. 631–872. Zbl0960.00041MR1800030
  19. J. Mott, Eisenstein-type irreducibility criteria. Zero-dimensional commutative rings (Knoxville, TN, 1994), 307–329, Lecture Notes in Pure and Appl. Math. 171, Dekker, New York, 1995. Zbl0938.12005MR1335724
  20. G. Pólya, G. Szegő, Problems and theorems in analysis. Vol. II. Revised and enlarged translation by C. E. Billigheimer of the fourth German edition, Springer Study Edition, Springer, New York, 1976. Zbl0359.00003MR396134
  21. I. Schur, Gleichungen Ohne Affekt. Gesammelte Abhandlungen. Band III. Springer, Berlin, 1973, pp. 191–197. MR462893
  22. I. Schur, Affektlose Gleichungen in der Theorie der Laguerreschen und Hermiteschen Polynome. Gesammelte Abhandlungen. Band III, Springer, Berlin, 1973, pp. 227–233. Zbl0002.11501
  23. E. Sell, On a certain family of generalized Laguerre polynomials. J. Number Theory 107 (2004), no. 2, 266–281. Zbl1053.11083MR2072388
  24. N. J. Sonin, Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries. Math. Ann. 16 (1880), 1–80. MR1510013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.