On the Galois group of generalized Laguerre polynomials
- [1] Department of Mathematics & Statistics University of Massachusetts Amherst, MA 01003-9318 USA
Journal de Théorie des Nombres de Bordeaux (2005)
- Volume: 17, Issue: 2, page 517-525
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topHajir, Farshid. "On the Galois group of generalized Laguerre polynomials." Journal de Théorie des Nombres de Bordeaux 17.2 (2005): 517-525. <http://eudml.org/doc/249418>.
@article{Hajir2005,
abstract = {Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed $\alpha \in \mathbb\{Q\}- \mathbb\{Z\}_\{<0\}$, Filaseta and Lam have shown that the $n$th degree Generalized Laguerre Polynomial $L_n^\{(\alpha )\}(x) = \sum _\{j=0\}^n \binom\{n+\alpha \}\{n-j\}(-x)^j/j!$ is irreducible for all large enough $n$. We use our criterion to show that, under these conditions, the Galois group of $L_n^\{(\alpha )\}(x)$ is either the alternating or symmetric group on $n$ letters, generalizing results of Schur for $\alpha =0,1,\pm \frac\{1\}\{2\}, -1-n$.},
affiliation = {Department of Mathematics & Statistics University of Massachusetts Amherst, MA 01003-9318 USA},
author = {Hajir, Farshid},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {Galois group; Generalized Laguerre Polynomial; Newton Polygon; Newton polygons},
language = {eng},
number = {2},
pages = {517-525},
publisher = {Université Bordeaux 1},
title = {On the Galois group of generalized Laguerre polynomials},
url = {http://eudml.org/doc/249418},
volume = {17},
year = {2005},
}
TY - JOUR
AU - Hajir, Farshid
TI - On the Galois group of generalized Laguerre polynomials
JO - Journal de Théorie des Nombres de Bordeaux
PY - 2005
PB - Université Bordeaux 1
VL - 17
IS - 2
SP - 517
EP - 525
AB - Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be “large.” For a fixed $\alpha \in \mathbb{Q}- \mathbb{Z}_{<0}$, Filaseta and Lam have shown that the $n$th degree Generalized Laguerre Polynomial $L_n^{(\alpha )}(x) = \sum _{j=0}^n \binom{n+\alpha }{n-j}(-x)^j/j!$ is irreducible for all large enough $n$. We use our criterion to show that, under these conditions, the Galois group of $L_n^{(\alpha )}(x)$ is either the alternating or symmetric group on $n$ letters, generalizing results of Schur for $\alpha =0,1,\pm \frac{1}{2}, -1-n$.
LA - eng
KW - Galois group; Generalized Laguerre Polynomial; Newton Polygon; Newton polygons
UR - http://eudml.org/doc/249418
ER -
References
top- N. H. Abel, Oeuvres Complètes. Tome 2, Grondahl & Son, Christiania, 1881.
- R. F. Coleman, On the Galois groups of the exponential Taylor polynomials. Enseign. Math. (2) 33 (1987), no. 3-4, 183–189. Zbl0672.12004MR925984
- W. Feit, and are Galois groups over number fields. J. Algebra 104 (1986), no. 2, 231–260. Zbl0609.12005MR866773
- M. Filaseta, T.-Y. Lam, On the irreducibility of the Generalized Laguerre polynomials. Acta Arith. 105 (2002), no. 2, 177–182. Zbl1010.12001MR1932764
- M. Filaseta, R. L. Williams, Jr., On the irreducibility of a certain class of Laguerre polynomials. J. Number Theory 100 (2003), no. 2, 229–250. Zbl1019.11006MR1978454
- P. X. Gallagher, The large sieve and probabilistic Galois theory, in Analytic number theory. (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972), pp. 91–101. Amer. Math. Soc., Providence, R.I., 1973. Zbl0279.10036MR332694
- S. Gao, Absolute irreducibility of polynomials via Newton polytopes. J. Algebra 237 (2001), no. 2, 501–520. Zbl0997.12001MR1816701
- F. Q. Gouvêa, -adic numbers. Second edition, Springer, Berlin, 1997. Zbl0874.11002MR1488696
- R. Gow, Some Generalized Laguerre polynomials whose Galois groups are the Alternating groups. J. Number Theory 31 (1989), no. 2, 201–207. Zbl0693.12009MR987573
- F. Hajir, Some -extensions obtained from Generalized Laguerre polynomials. J. Number Theory 50 (1995), no. 2, 206–212. Zbl0829.12004MR1316816
- F. Hajir, Algebraic properties of a family of Generalized Laguerre Polynomials. Preprint, 2004, 19pp. Zbl1255.33006
- F. Hajir, S. Wong, Specializations of one-parameter families of polynomials. Ann. Inst. Fourier (Grenoble), to appear, 26pp. Zbl1160.12004MR2266886
- M. Hall, The theory of groups. Macmillan, 1959. Zbl0084.02202MR103215
- C. Jordan, Sur la limite de transitivité des groupes non alternés. Bull. Soc. Math. France, 1 (1872-3), 40–71. Zbl07.0073.02MR1503635
- M. Kölle, P. Schmid, Computing Galois groups by means of Newton polygons. Acta Arith. 115 (2004), no. 1, 71–84. Zbl1071.11066MR2102807
- T. Kondo, Algebraic number fields with the discriminant equal to that of a quadratic number field. J. Math. Soc. Japan 47 (1995), no. 1, 31–36. Zbl0865.11074MR1304187
- E. Laguerre, Sur l’intégrale . Bull. Soc. math. France 7 (1879) 72–81. Reprinted in Oeuvres, Vol. 1. New York: Chelsea, 428–437, 1971. Zbl11.0214.03
- B. H. Matzat, J. McKay, K. Yokoyama, Algorithmic methods in Galois theory. J. Symbolic Comput. 30 (2000), no. 6. Academic Press, Oxford, 2000. pp. 631–872. Zbl0960.00041MR1800030
- J. Mott, Eisenstein-type irreducibility criteria. Zero-dimensional commutative rings (Knoxville, TN, 1994), 307–329, Lecture Notes in Pure and Appl. Math. 171, Dekker, New York, 1995. Zbl0938.12005MR1335724
- G. Pólya, G. Szegő, Problems and theorems in analysis. Vol. II. Revised and enlarged translation by C. E. Billigheimer of the fourth German edition, Springer Study Edition, Springer, New York, 1976. Zbl0359.00003MR396134
- I. Schur, Gleichungen Ohne Affekt. Gesammelte Abhandlungen. Band III. Springer, Berlin, 1973, pp. 191–197. MR462893
- I. Schur, Affektlose Gleichungen in der Theorie der Laguerreschen und Hermiteschen Polynome. Gesammelte Abhandlungen. Band III, Springer, Berlin, 1973, pp. 227–233. Zbl0002.11501
- E. Sell, On a certain family of generalized Laguerre polynomials. J. Number Theory 107 (2004), no. 2, 266–281. Zbl1053.11083MR2072388
- N. J. Sonin, Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries. Math. Ann. 16 (1880), 1–80. MR1510013
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.