Weight reduction for cohomological mod p modular forms over imaginary quadratic fields

Adam Mohamed[1]

  • [1] Universität Duisburg-Essen, Institut für Experimentelle Mathematik, Ellernstr 29, 45326 Essen, Germany

Publications mathématiques de Besançon (2014)

  • Issue: 1, page 45-71
  • ISSN: 1958-7236

Abstract

top
Let F be an imaginary quadratic field and 𝒪 its ring of integers. Let 𝔫 𝒪 be a non-zero ideal and let p > 5 be a rational inert prime in F and coprime with 𝔫 . Let V be an irreducible finite dimensional representation of 𝔽 ¯ p [ GL 2 ( 𝔽 p 2 ) ] . We establish that a system of Hecke eigenvalues appearing in the cohomology with coefficients in V already lives in the cohomology with coefficients in 𝔽 ¯ p d e t e for some e 0 ; except possibly in some few cases.

How to cite

top

Mohamed, Adam. "Weight reduction for cohomological mod $p$ modular forms over imaginary quadratic fields." Publications mathématiques de Besançon (2014): 45-71. <http://eudml.org/doc/275780>.

@article{Mohamed2014,
abstract = {Let $F$ be an imaginary quadratic field and $ \mathcal\{O\}$ its ring of integers. Let $ \mathfrak\{ n\} \subset \mathcal\{ O\} $ be a non-zero ideal and let $ p&gt; 5$ be a rational inert prime in $F$ and coprime with $ \mathfrak\{ n\}$. Let $ V$ be an irreducible finite dimensional representation of $ \overline\{\mathbb\{F\}\}_\{p\}[\{\rm GL\}_2(\mathbb\{F\}_\{ p^2\})]$. We establish that a system of Hecke eigenvalues appearing in the cohomology with coefficients in $ V$ already lives in the cohomology with coefficients in $ \overline\{\mathbb\{F\}\}_\{p\}\otimes det^e$ for some $ e \ge 0$; except possibly in some few cases.},
affiliation = {Universität Duisburg-Essen, Institut für Experimentelle Mathematik, Ellernstr 29, 45326 Essen, Germany},
author = {Mohamed, Adam},
journal = {Publications mathématiques de Besançon},
keywords = {Modular forms modulo $p$; imaginary quadratic fields; Hecke operators; Serre weight; modular forms modulo },
language = {eng},
number = {1},
pages = {45-71},
publisher = {Presses universitaires de Franche-Comté},
title = {Weight reduction for cohomological mod $p$ modular forms over imaginary quadratic fields},
url = {http://eudml.org/doc/275780},
year = {2014},
}

TY - JOUR
AU - Mohamed, Adam
TI - Weight reduction for cohomological mod $p$ modular forms over imaginary quadratic fields
JO - Publications mathématiques de Besançon
PY - 2014
PB - Presses universitaires de Franche-Comté
IS - 1
SP - 45
EP - 71
AB - Let $F$ be an imaginary quadratic field and $ \mathcal{O}$ its ring of integers. Let $ \mathfrak{ n} \subset \mathcal{ O} $ be a non-zero ideal and let $ p&gt; 5$ be a rational inert prime in $F$ and coprime with $ \mathfrak{ n}$. Let $ V$ be an irreducible finite dimensional representation of $ \overline{\mathbb{F}}_{p}[{\rm GL}_2(\mathbb{F}_{ p^2})]$. We establish that a system of Hecke eigenvalues appearing in the cohomology with coefficients in $ V$ already lives in the cohomology with coefficients in $ \overline{\mathbb{F}}_{p}\otimes det^e$ for some $ e \ge 0$; except possibly in some few cases.
LA - eng
KW - Modular forms modulo $p$; imaginary quadratic fields; Hecke operators; Serre weight; modular forms modulo
UR - http://eudml.org/doc/275780
ER -

References

top
  1. A. Mohamed, Some explicit aspects of modular forms over imaginary quadratic fields, PhD Thesis, Universität Duisburg Essen, Campus Essen, June 2011, available from http://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=26232&lang=en. 
  2. A. Ash and G. Stevens, Modular forms in characteristic l and special values of their L-function, Duke Math. J 53, no 3 849-868. Zbl0618.10026MR860675
  3. A. Ash and G. Stevens, Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues, J. Reine Angew. Math. 365 (1986), 192–220. Zbl0596.10026MR826158
  4. A. Ash, D. Doud, and D. Pollack, Galois representations with conjectural connections to arithmetic cohomology, Duke Mathematical Journal, Vol. 112, No. 3, 2002. Zbl1023.11025MR1896473
  5. A. Ash and W. Sinnott, An analogue of Serre’s conjecture for Galois representations and Hecke eigenclasses in the mod-p cohomology of GL ( n ; ) , Duke Math. J. 105 (2000), 1-24. Zbl1015.11018MR1788040
  6. J. S. Bygott, Modular forms and modular symbols over imaginary quadratic fields, PhD thesis, University of Exeter, 1998. 
  7. K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, Springer-Verlag New-York, 1982. Zbl0584.20036MR672956
  8. F. Diamond, A correspondence between representations of local Galois groups and Lie-type groups, Proceedings of the LMS Durham Symposium on L-functions and Galois Representations, 2004. Zbl1230.11069
  9. B. Edixhoven, C. Khare, Hasse invariant and group cohomology, Documenta Math 8 (2003) 43-50. Zbl1044.11030MR2029159
  10. M. Emerton, p -Adic families of modular forms, Séminaire Bourbaki, 62ème anneé, 2009-2010, No. 1013, (2009). 
  11. L. M. Figueiredo, Serre’s conjecture for imaginary quadratic fields, Compositio Mathematica. 118 (1999), No. 1, 103-122. Zbl1021.11018MR1705978
  12. M. H. Sengün and S. Türkelli, Weight Reduction for mod l Bianchi Modular forms, Journal of Number Theory, Volume 129, Issue 8, August 2009, Pages 2010-2019. Zbl1245.11069MR2522720
  13. R. Taylor, On congruences between modular forms, PhD Thesis, Princeton University 1988. MR2636500
  14. G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Mathematical Journals, Vol.45, №. 3, (1978), 637-679. Zbl0394.10015MR507462
  15. E. Urban, Formes automorphes cuspidales pour GL 2 sur un corps quadratique imaginaire. Valeurs spéciales de fonctions L et congruences, Compositio Mathematica, tome 99, No. 3 ( 1995), 283-324. Zbl0846.11029MR1361742
  16. G. Wiese, On the faithfulness of parabolic cohomology as a Hecke module over a finite field, J. Reine Angew. Math. ( 2007), 79-103. Zbl1126.11028MR2337642

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.