Weight reduction for cohomological mod modular forms over imaginary quadratic fields
Adam Mohamed[1]
- [1] Universität Duisburg-Essen, Institut für Experimentelle Mathematik, Ellernstr 29, 45326 Essen, Germany
Publications mathématiques de Besançon (2014)
- Issue: 1, page 45-71
- ISSN: 1958-7236
Access Full Article
topAbstract
topHow to cite
topMohamed, Adam. "Weight reduction for cohomological mod $p$ modular forms over imaginary quadratic fields." Publications mathématiques de Besançon (2014): 45-71. <http://eudml.org/doc/275780>.
@article{Mohamed2014,
abstract = {Let $F$ be an imaginary quadratic field and $ \mathcal\{O\}$ its ring of integers. Let $ \mathfrak\{ n\} \subset \mathcal\{ O\} $ be a non-zero ideal and let $ p> 5$ be a rational inert prime in $F$ and coprime with $ \mathfrak\{ n\}$. Let $ V$ be an irreducible finite dimensional representation of $ \overline\{\mathbb\{F\}\}_\{p\}[\{\rm GL\}_2(\mathbb\{F\}_\{ p^2\})]$. We establish that a system of Hecke eigenvalues appearing in the cohomology with coefficients in $ V$ already lives in the cohomology with coefficients in $ \overline\{\mathbb\{F\}\}_\{p\}\otimes det^e$ for some $ e \ge 0$; except possibly in some few cases.},
affiliation = {Universität Duisburg-Essen, Institut für Experimentelle Mathematik, Ellernstr 29, 45326 Essen, Germany},
author = {Mohamed, Adam},
journal = {Publications mathématiques de Besançon},
keywords = {Modular forms modulo $p$; imaginary quadratic fields; Hecke operators; Serre weight; modular forms modulo },
language = {eng},
number = {1},
pages = {45-71},
publisher = {Presses universitaires de Franche-Comté},
title = {Weight reduction for cohomological mod $p$ modular forms over imaginary quadratic fields},
url = {http://eudml.org/doc/275780},
year = {2014},
}
TY - JOUR
AU - Mohamed, Adam
TI - Weight reduction for cohomological mod $p$ modular forms over imaginary quadratic fields
JO - Publications mathématiques de Besançon
PY - 2014
PB - Presses universitaires de Franche-Comté
IS - 1
SP - 45
EP - 71
AB - Let $F$ be an imaginary quadratic field and $ \mathcal{O}$ its ring of integers. Let $ \mathfrak{ n} \subset \mathcal{ O} $ be a non-zero ideal and let $ p> 5$ be a rational inert prime in $F$ and coprime with $ \mathfrak{ n}$. Let $ V$ be an irreducible finite dimensional representation of $ \overline{\mathbb{F}}_{p}[{\rm GL}_2(\mathbb{F}_{ p^2})]$. We establish that a system of Hecke eigenvalues appearing in the cohomology with coefficients in $ V$ already lives in the cohomology with coefficients in $ \overline{\mathbb{F}}_{p}\otimes det^e$ for some $ e \ge 0$; except possibly in some few cases.
LA - eng
KW - Modular forms modulo $p$; imaginary quadratic fields; Hecke operators; Serre weight; modular forms modulo
UR - http://eudml.org/doc/275780
ER -
References
top- A. Mohamed, Some explicit aspects of modular forms over imaginary quadratic fields, PhD Thesis, Universität Duisburg Essen, Campus Essen, June 2011, available from http://duepublico.uni-duisburg-essen.de/servlets/DocumentServlet?id=26232&lang=en.
- A. Ash and G. Stevens, Modular forms in characteristic l and special values of their L-function, Duke Math. J 53, no 3 849-868. Zbl0618.10026MR860675
- A. Ash and G. Stevens, Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues, J. Reine Angew. Math. 365 (1986), 192–220. Zbl0596.10026MR826158
- A. Ash, D. Doud, and D. Pollack, Galois representations with conjectural connections to arithmetic cohomology, Duke Mathematical Journal, Vol. 112, No. 3, 2002. Zbl1023.11025MR1896473
- A. Ash and W. Sinnott, An analogue of Serre’s conjecture for Galois representations and Hecke eigenclasses in the mod-p cohomology of , Duke Math. J. 105 (2000), 1-24. Zbl1015.11018MR1788040
- J. S. Bygott, Modular forms and modular symbols over imaginary quadratic fields, PhD thesis, University of Exeter, 1998.
- K. S. Brown, Cohomology of groups, Graduate Texts in Mathematics, Springer-Verlag New-York, 1982. Zbl0584.20036MR672956
- F. Diamond, A correspondence between representations of local Galois groups and Lie-type groups, Proceedings of the LMS Durham Symposium on L-functions and Galois Representations, 2004. Zbl1230.11069
- B. Edixhoven, C. Khare, Hasse invariant and group cohomology, Documenta Math 8 (2003) 43-50. Zbl1044.11030MR2029159
- M. Emerton, -Adic families of modular forms, Séminaire Bourbaki, 62ème anneé, 2009-2010, No. 1013, (2009).
- L. M. Figueiredo, Serre’s conjecture for imaginary quadratic fields, Compositio Mathematica. 118 (1999), No. 1, 103-122. Zbl1021.11018MR1705978
- M. H. Sengün and S. Türkelli, Weight Reduction for mod l Bianchi Modular forms, Journal of Number Theory, Volume 129, Issue 8, August 2009, Pages 2010-2019. Zbl1245.11069MR2522720
- R. Taylor, On congruences between modular forms, PhD Thesis, Princeton University 1988. MR2636500
- G. Shimura, The special values of the zeta functions associated with Hilbert modular forms, Duke Mathematical Journals, Vol.45, №. 3, (1978), 637-679. Zbl0394.10015MR507462
- E. Urban, Formes automorphes cuspidales pour sur un corps quadratique imaginaire. Valeurs spéciales de fonctions L et congruences, Compositio Mathematica, tome 99, No. 3 ( 1995), 283-324. Zbl0846.11029MR1361742
- G. Wiese, On the faithfulness of parabolic cohomology as a Hecke module over a finite field, J. Reine Angew. Math. ( 2007), 79-103. Zbl1126.11028MR2337642
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.