# On the heights of totally $p$-adic numbers

Paul Fili^{[1]}

- [1] Department of Mathematics University of Rochester, Rochester, NY 14627

Journal de Théorie des Nombres de Bordeaux (2014)

- Volume: 26, Issue: 1, page 103-109
- ISSN: 1246-7405

## Access Full Article

top## Abstract

top## How to cite

topFili, Paul. "On the heights of totally $p$-adic numbers." Journal de Théorie des Nombres de Bordeaux 26.1 (2014): 103-109. <http://eudml.org/doc/275782>.

@article{Fili2014,

abstract = {Bombieri and Zannier established lower and upper bounds for the limit infimum of the Weil height in fields of totally $p$-adic numbers and generalizations thereof. In this paper, we use potential theoretic techniques to generalize the upper bounds from their paper and, under the assumption of integrality, to improve slightly upon their bounds.},

affiliation = {Department of Mathematics University of Rochester, Rochester, NY 14627},

author = {Fili, Paul},

journal = {Journal de Théorie des Nombres de Bordeaux},

keywords = {Weil height; totally $p$-adic; potential theory; Fekete-Szegő theorem; totally -adic},

language = {eng},

month = {4},

number = {1},

pages = {103-109},

publisher = {Société Arithmétique de Bordeaux},

title = {On the heights of totally $p$-adic numbers},

url = {http://eudml.org/doc/275782},

volume = {26},

year = {2014},

}

TY - JOUR

AU - Fili, Paul

TI - On the heights of totally $p$-adic numbers

JO - Journal de Théorie des Nombres de Bordeaux

DA - 2014/4//

PB - Société Arithmétique de Bordeaux

VL - 26

IS - 1

SP - 103

EP - 109

AB - Bombieri and Zannier established lower and upper bounds for the limit infimum of the Weil height in fields of totally $p$-adic numbers and generalizations thereof. In this paper, we use potential theoretic techniques to generalize the upper bounds from their paper and, under the assumption of integrality, to improve slightly upon their bounds.

LA - eng

KW - Weil height; totally $p$-adic; potential theory; Fekete-Szegő theorem; totally -adic

UR - http://eudml.org/doc/275782

ER -

## References

top- M. Baker, A lower bound for average values of dynamical Green’s functions, Math. Res. Lett., 13 (2006), 245–257. Zbl1173.11041MR2231115
- M. Baker and R. Rumely, Potential theory and dynamics on the Berkovich projective line, Mathematical Surveys and Monographs 159, American Mathematical Society, Providence, RI, (2010). Zbl1196.14002
- E. Bombieri and U. Zannier, A note on heights in certain infinite extensions of $\mathbb{Q}$, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 12 (2001), 5–14. Zbl1072.11077
- V. Flammang, Two new points in the spectrum of the absolute Mahler measure of totally positive algebraic integers, Math. Comp. 65 (1996), 307–311. Zbl0852.11058MR1320894
- R. Rumely, The Fekete-Szegő theorem with splitting conditions. I, Acta Arith. 93 (2000), 99–116. Zbl0946.11025MR1757183
- R. Rumely, The Fekete-Szegő theorem with splitting conditions. II, Acta Arith. 103 (2002), 347–410. Zbl1126.11342
- R. Rumely, Capacity theory on algebraic curves, Lecture Notes in Mathematics 1378, Springer-Verlag, Berlin, (1989). Zbl0679.14012MR1009368
- C. J. Smyth, On the measure of totally real algebraic integers, J. Austral. Math. Soc. Ser. A 30 (1980/81), 137–149. Zbl0457.12001
- C. J. Smyth, On the measure of totally real algebraic integers. II, Math. Comp. 37 (1981), 205–208. Zbl0475.12001MR616373

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.