Asymptotic values of modular multiplicities for GL 2

Sandra Rozensztajn[1]

  • [1] UMPA, ENS de Lyon UMR 5669 du CNRS 46, allée d’Italie 69364 Lyon Cedex 07 France

Journal de Théorie des Nombres de Bordeaux (2014)

  • Volume: 26, Issue: 2, page 465-482
  • ISSN: 1246-7405

Abstract

top
We study the irreducible constituents of the reduction modulo p of irreducible algebraic representations V of the group Res K / p GL 2 for K a finite extension of p . We show that asymptotically, the multiplicity of each constituent depends only on the dimension of V and the central character of its reduction modulo p . As an application, we compute the asymptotic value of multiplicities that are the object of the Breuil-Mézard conjecture.

How to cite

top

Rozensztajn, Sandra. "Asymptotic values of modular multiplicities for $\operatorname{GL}_2$." Journal de Théorie des Nombres de Bordeaux 26.2 (2014): 465-482. <http://eudml.org/doc/275787>.

@article{Rozensztajn2014,
abstract = {We study the irreducible constituents of the reduction modulo $p$ of irreducible algebraic representations $V$ of the group $\operatorname\{Res\}_\{K/\mathbb\{Q\}_p\}\operatorname\{GL\}_2$ for $K$ a finite extension of $\mathbb\{Q\}_p$. We show that asymptotically, the multiplicity of each constituent depends only on the dimension of $V$ and the central character of its reduction modulo $p$. As an application, we compute the asymptotic value of multiplicities that are the object of the Breuil-Mézard conjecture.},
affiliation = {UMPA, ENS de Lyon UMR 5669 du CNRS 46, allée d’Italie 69364 Lyon Cedex 07 France},
author = {Rozensztajn, Sandra},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {10},
number = {2},
pages = {465-482},
publisher = {Société Arithmétique de Bordeaux},
title = {Asymptotic values of modular multiplicities for $\operatorname\{GL\}_2$},
url = {http://eudml.org/doc/275787},
volume = {26},
year = {2014},
}

TY - JOUR
AU - Rozensztajn, Sandra
TI - Asymptotic values of modular multiplicities for $\operatorname{GL}_2$
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/10//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 2
SP - 465
EP - 482
AB - We study the irreducible constituents of the reduction modulo $p$ of irreducible algebraic representations $V$ of the group $\operatorname{Res}_{K/\mathbb{Q}_p}\operatorname{GL}_2$ for $K$ a finite extension of $\mathbb{Q}_p$. We show that asymptotically, the multiplicity of each constituent depends only on the dimension of $V$ and the central character of its reduction modulo $p$. As an application, we compute the asymptotic value of multiplicities that are the object of the Breuil-Mézard conjecture.
LA - eng
UR - http://eudml.org/doc/275787
ER -

References

top
  1. K. Buzzard, F. Diamond, and F. Jarvis, On Serre’s conjecture for mod Galois representations over totally real fields, Duke Math. J., 155, 1 (2010), 105–161. Zbl1227.11070MR2730374
  2. L. Barthel and R. Livné, Irreducible modular representations of GL 2 of a local field, Duke Math. J., 75, 2 (1994), 261–292. Zbl0826.22019MR1290194
  3. T. Barnet-Lamb, T. Gee, and D. Geraghty, Serre weights for rank two unitary groups, to appear in Math Ann. Zbl06194417MR3072811
  4. C. Breuil and A. Mézard, Multiplicités modulaires et représentations de GL 2 ( Z p ) et de Gal ( Q ¯ p / Q p ) en l = p , Duke Math. J., 115(2), (2002), 205–310. With an appendix by Guy Henniart. Zbl1042.11030MR1944572
  5. C. Breuil and A. Mézard, Multiplicités modulaires raffinées, Bull. Soc. Math. France 142, (2014), 127–175. MR3248725
  6. C. Bonnafé, Representations of SL 2 ( 𝔽 q ) , Algebra and Applications, 13, (2011), Springer-Verlag London Ltd., London. Zbl1203.22001MR2732651
  7. C. Breuil and V. Paškūnas, Towards a modulo p Langlands correspondence for GL 2 , Mem. Amer. Math. Soc., 216(1016):vi+114, (2012). Zbl1245.22010MR2931521
  8. F. Diamond, A correspondence between representations of local Galois groups and Lie-type groups, L -functions and Galois representations, London Math. Soc. Lecture Note Ser. 320 (2007), 187–206. Cambridge Univ. Press, Cambridge. Zbl1230.11069MR2392355
  9. A. David, Calculs de multiplicités dans la conjecture de Breuil-Mézard, preprint, (2013). 
  10. M. Emerton and T. Gee, A geometric perspective on the Breuil-Mézard conjecture 09, (2011). Zbl1318.11061
  11. T. Gee and M. Kisin, The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, preprint (2012). Zbl06391704MR3292675
  12. D.J. Glover, A study of certain modular representations, J. Algebra, 51(2), (1978), 425–475. Zbl0376.20008MR476841
  13. M. Kisin, Potentially semi-stable deformation rings, J. Amer. Math. Soc., 21(2), (2008), 513–546. Zbl1205.11060MR2373358
  14. M. Kisin, The Fontaine-Mazur conjecture for GL 2 , J. Amer. Math. Soc., 22(3), (2009), 641–690. Zbl1251.11045MR2505297
  15. M. Kisin, The structure of potentially semi-stable deformation rings, Proceedings of the International Congress of Mathematicians, New Delhi, Hindustan Book Agency II, (2010), 294–311. Zbl1273.11090MR2827797
  16. V. Paškūnas, On the Breuil-Mézard conjecture, preprint (2012). Zbl06416950
  17. M.M. Schein, Weights in Serre’s conjecture for Hilbert modular forms, the ramified case, Israel J. Math., 166, (2008), 369–391. Zbl1197.11063MR2430440

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.