Asymptotic values of modular multiplicities for
- [1] UMPA, ENS de Lyon UMR 5669 du CNRS 46, allée d’Italie 69364 Lyon Cedex 07 France
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 2, page 465-482
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topRozensztajn, Sandra. "Asymptotic values of modular multiplicities for $\operatorname{GL}_2$." Journal de Théorie des Nombres de Bordeaux 26.2 (2014): 465-482. <http://eudml.org/doc/275787>.
@article{Rozensztajn2014,
abstract = {We study the irreducible constituents of the reduction modulo $p$ of irreducible algebraic representations $V$ of the group $\operatorname\{Res\}_\{K/\mathbb\{Q\}_p\}\operatorname\{GL\}_2$ for $K$ a finite extension of $\mathbb\{Q\}_p$. We show that asymptotically, the multiplicity of each constituent depends only on the dimension of $V$ and the central character of its reduction modulo $p$. As an application, we compute the asymptotic value of multiplicities that are the object of the Breuil-Mézard conjecture.},
affiliation = {UMPA, ENS de Lyon UMR 5669 du CNRS 46, allée d’Italie 69364 Lyon Cedex 07 France},
author = {Rozensztajn, Sandra},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {10},
number = {2},
pages = {465-482},
publisher = {Société Arithmétique de Bordeaux},
title = {Asymptotic values of modular multiplicities for $\operatorname\{GL\}_2$},
url = {http://eudml.org/doc/275787},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Rozensztajn, Sandra
TI - Asymptotic values of modular multiplicities for $\operatorname{GL}_2$
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/10//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 2
SP - 465
EP - 482
AB - We study the irreducible constituents of the reduction modulo $p$ of irreducible algebraic representations $V$ of the group $\operatorname{Res}_{K/\mathbb{Q}_p}\operatorname{GL}_2$ for $K$ a finite extension of $\mathbb{Q}_p$. We show that asymptotically, the multiplicity of each constituent depends only on the dimension of $V$ and the central character of its reduction modulo $p$. As an application, we compute the asymptotic value of multiplicities that are the object of the Breuil-Mézard conjecture.
LA - eng
UR - http://eudml.org/doc/275787
ER -
References
top- K. Buzzard, F. Diamond, and F. Jarvis, On Serre’s conjecture for mod Galois representations over totally real fields, Duke Math. J., 155, 1 (2010), 105–161. Zbl1227.11070MR2730374
- L. Barthel and R. Livné, Irreducible modular representations of of a local field, Duke Math. J., 75, 2 (1994), 261–292. Zbl0826.22019MR1290194
- T. Barnet-Lamb, T. Gee, and D. Geraghty, Serre weights for rank two unitary groups, to appear in Math Ann. Zbl06194417MR3072811
- C. Breuil and A. Mézard, Multiplicités modulaires et représentations de et de en , Duke Math. J., 115(2), (2002), 205–310. With an appendix by Guy Henniart. Zbl1042.11030MR1944572
- C. Breuil and A. Mézard, Multiplicités modulaires raffinées, Bull. Soc. Math. France 142, (2014), 127–175. MR3248725
- C. Bonnafé, Representations of , Algebra and Applications, 13, (2011), Springer-Verlag London Ltd., London. Zbl1203.22001MR2732651
- C. Breuil and V. Paškūnas, Towards a modulo Langlands correspondence for , Mem. Amer. Math. Soc., 216(1016):vi+114, (2012). Zbl1245.22010MR2931521
- F. Diamond, A correspondence between representations of local Galois groups and Lie-type groups, -functions and Galois representations, London Math. Soc. Lecture Note Ser. 320 (2007), 187–206. Cambridge Univ. Press, Cambridge. Zbl1230.11069MR2392355
- A. David, Calculs de multiplicités dans la conjecture de Breuil-Mézard, preprint, (2013).
- M. Emerton and T. Gee, A geometric perspective on the Breuil-Mézard conjecture 09, (2011). Zbl1318.11061
- T. Gee and M. Kisin, The Breuil-Mézard conjecture for potentially Barsotti-Tate representations, preprint (2012). Zbl06391704MR3292675
- D.J. Glover, A study of certain modular representations, J. Algebra, 51(2), (1978), 425–475. Zbl0376.20008MR476841
- M. Kisin, Potentially semi-stable deformation rings, J. Amer. Math. Soc., 21(2), (2008), 513–546. Zbl1205.11060MR2373358
- M. Kisin, The Fontaine-Mazur conjecture for , J. Amer. Math. Soc., 22(3), (2009), 641–690. Zbl1251.11045MR2505297
- M. Kisin, The structure of potentially semi-stable deformation rings, Proceedings of the International Congress of Mathematicians, New Delhi, Hindustan Book Agency II, (2010), 294–311. Zbl1273.11090MR2827797
- V. Paškūnas, On the Breuil-Mézard conjecture, preprint (2012). Zbl06416950
- M.M. Schein, Weights in Serre’s conjecture for Hilbert modular forms, the ramified case, Israel J. Math., 166, (2008), 369–391. Zbl1197.11063MR2430440
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.