Iwasawa theory for symmetric powers of CM modular forms at non-ordinary primes

Robert Harron[1]; Antonio Lei[2]

  • [1] Department of Mathematics Keller Hall University of Hawai‘i at Mānoa Honolulu, HI 96822, USA
  • [2] Département de mathématiques et de statistique Pavillon Alexandre-Vachon Université Laval Québec, QC Canada G1V 0A6

Journal de Théorie des Nombres de Bordeaux (2014)

  • Volume: 26, Issue: 3, page 673-707
  • ISSN: 1246-7405

Abstract

top
Let f be a cuspidal newform with complex multiplication (CM) and let p be an odd prime at which f is non-ordinary. We construct admissible p -adic L -functions for the symmetric powers of f , thus verifying conjectures of Dabrowski and Panchishkin in this special case. We combine this with recent work of Benois to prove the trivial zero conjecture in this setting. We also construct “mixed” plus and minus p -adic L -functions and prove an analogue of Pollack’s decomposition of the admissible p -adic L -functions. On the arithmetic side, we define corresponding mixed plus and minus Selmer groups and formulate the Main Conjecture of Iwasawa Theory.

How to cite

top

Harron, Robert, and Lei, Antonio. "Iwasawa theory for symmetric powers of CM modular forms at non-ordinary primes." Journal de Théorie des Nombres de Bordeaux 26.3 (2014): 673-707. <http://eudml.org/doc/275790>.

@article{Harron2014,
abstract = {Let $f$ be a cuspidal newform with complex multiplication (CM) and let $p$ be an odd prime at which $f$ is non-ordinary. We construct admissible $p$-adic $L$-functions for the symmetric powers of $f$, thus verifying conjectures of Dabrowski and Panchishkin in this special case. We combine this with recent work of Benois to prove the trivial zero conjecture in this setting. We also construct “mixed” plus and minus $p$-adic $L$-functions and prove an analogue of Pollack’s decomposition of the admissible $p$-adic $L$-functions. On the arithmetic side, we define corresponding mixed plus and minus Selmer groups and formulate the Main Conjecture of Iwasawa Theory.},
affiliation = {Department of Mathematics Keller Hall University of Hawai‘i at Mānoa Honolulu, HI 96822, USA; Département de mathématiques et de statistique Pavillon Alexandre-Vachon Université Laval Québec, QC Canada G1V 0A6},
author = {Harron, Robert, Lei, Antonio},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {12},
number = {3},
pages = {673-707},
publisher = {Société Arithmétique de Bordeaux},
title = {Iwasawa theory for symmetric powers of CM modular forms at non-ordinary primes},
url = {http://eudml.org/doc/275790},
volume = {26},
year = {2014},
}

TY - JOUR
AU - Harron, Robert
AU - Lei, Antonio
TI - Iwasawa theory for symmetric powers of CM modular forms at non-ordinary primes
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/12//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 3
SP - 673
EP - 707
AB - Let $f$ be a cuspidal newform with complex multiplication (CM) and let $p$ be an odd prime at which $f$ is non-ordinary. We construct admissible $p$-adic $L$-functions for the symmetric powers of $f$, thus verifying conjectures of Dabrowski and Panchishkin in this special case. We combine this with recent work of Benois to prove the trivial zero conjecture in this setting. We also construct “mixed” plus and minus $p$-adic $L$-functions and prove an analogue of Pollack’s decomposition of the admissible $p$-adic $L$-functions. On the arithmetic side, we define corresponding mixed plus and minus Selmer groups and formulate the Main Conjecture of Iwasawa Theory.
LA - eng
UR - http://eudml.org/doc/275790
ER -

References

top
  1. Y. Amice and J. Vélu, Distributions p -adiques associées aux séries de Hecke, Journées Arithmétiques de Bordeaux (Conf., Univ. Bordeaux, Bordeaux, 1974), Soc. Math. France, Paris, (1975), 119–131. Astérisque, Nos. 24–25. Zbl0332.14010MR447195
  2. A. Borel and W. Casselman (eds.), Automorphic forms, representations, and L -functions, Proceedings of the Symposium in Pure Mathematics, vol. 33, American Mathematical Society, (1979), In two parts. 
  3. D. Benois, A generalization of Greenberg’s -invariant, Amer. J. Math. 133, (2011), 6, 1573–1632. Zbl1307.11079MR2863371
  4. D. Benois, Trivial zeros of p -adic L -functions at near central points, online at J. Inst. Math. Jussieu, doi: http://dx.doi.org/10.1017/S1474748013000261 Zbl1307.11116MR3211799
  5. J. Coates, R. Greenberg, B. Mazur, and I. Satake (eds.), Algebraic number theory, Advanced Studies in Pure Mathematics, vol. 17, Academic Press, (1989), Papers in honor of Kenkichi Iwasawa on the occasion of his 70th birthday on September 11, 1987. MR1097604
  6. L. Clozel and J. S. Milne (eds.), Automorphic forms, Shimura varieties, and L -functions, Vol. II, Perspectives in Mathematics, vol. 11, Academic Press, 1990, Proceedings of the conference held at the University of Michigan, Ann Arbor, Michigan, July 6–16, 1988. Zbl0684.00004MR1044825
  7. P. Colmez, Théorie d’Iwasawa des représentations de de Rham d’un corps local, Ann. of Math. (2) 148, (1998), 2, 485–571. Zbl0928.11045MR1668555
  8. J. Coates and C.-G. Schmidt, Iwasawa theory for the symmetric square of an elliptic curve, J. Reine Angew. Math. 375/376, (1987), 104–156. Zbl0609.14013MR882294
  9. A. Dabrowski, Admissible p -adic L -functions of automorphic forms, Moscow Univ. Math. Bull. 48, (1993), 2, 6–10, English translation of original Russian. Zbl0823.11019MR1223976
  10. A. Dabrowski, Bounded p -adic L -functions of motives at supersingular primes, C. R. Math. Acad. Sci. Paris 349, (2011), 7–8, 365–368. Zbl1219.11075MR2788370
  11. P. Deligne, Formes modulaires et représentations l -adiques, Séminaire Bourbaki (1968/69), no. 21, Exp. No. 355, 139–172. Zbl0206.49901
  12. P. Deligne, Valeurs de fonctions L et périodes d’intégrales, [BC79], part 2, (1979), 313–346. Zbl0449.10022MR546622
  13. R. Greenberg, Iwasawa theory for p -adic representations, [CGMzS89], (1989), 97–137. Zbl0739.11045MR1097613
  14. R. Greenberg, Trivial zeroes of p -adic L -functions, [MzSt94], (1994), 149–174. Zbl0838.11070MR1279608
  15. R. Harron, The exceptional zero conjecture for symmetric powers of CM modular forms: the ordinary case, Int. Math. Res. Not. 2013, (2013), 16, art. ID rns161, 3744–3770. Zbl06437681MR3090709
  16. H. Hida, Modules of congruence of Hecke algebras and L -functions associated with cusp forms, Amer. J. Math. 110, (1988), 2, 323–382. Zbl0645.10029MR935010
  17. H. Hida, p -adic L -functions for base change lifts of GL 2 to GL 3 , [CloMi90], (1990), 93–142. Zbl0705.11033MR1044829
  18. K. Iwasawa, Lectures on p -adic L -functions, Annals of Mathematics Studies, vol. 74, Princeton University Press, (1972). Zbl0236.12001MR360526
  19. H. Jacquet and J. A. Shalika, A non-vanishing theorem for zeta functions of GL n , Invent. Math. 38, (1976), 1, 1–16. Zbl0349.12006MR432596
  20. T. Kubota and H.-W. Leopoldt, Eine p -adische Theorie der Zetawerte. I. Einführung der p -adischen Dirichletschen L -Funktionen, J. Reine Angew. Math. 214/215, (1964), 328–339. Zbl0186.09103MR163900
  21. B. D. Kim, J. Park, and B. Zhang, Iwasawa main conjecture for CM elliptic curves over abelian extensions at supersingular primes, preprint, (2010). 
  22. A. Lei, Iwasawa theory for modular forms at supersingular primes, Compos. Math. 147, (2011), 03, 803–838. Zbl1234.11148MR2801401
  23. A. Lei, Iwasawa theory for the symmetric square of a CM modular form at inert primes, Glasg. Math. J. 54, (2012), 02, 241–259. Zbl1300.11113MR2911366
  24. A. Lei, D. Loeffler, and S. L. Zerbes, Coleman maps and the p -adic regulator, Algebra & Number Theory 5, (2011), 8, 1095–1131. Zbl1271.11100MR2948474
  25. B. Mazur and G. Stevens (eds.), p -adic monodromy and the Birch and Swinnerton-Dyer conjecture, Contemporary Mathematics, vol. 165, American Mathematical Society, 1994, Papers from the workshop held at Boston University, (1991), August 12–16. Zbl0794.00016MR1279598
  26. B. Mazur and A. Wiles, Class fields of abelian extensions of , Invent. Math., textbf76, (1984), 2, 179–330. Zbl0545.12005MR742853
  27. T. Ochiai, Control theorem for Bloch–Kato’s Selmer groups of p -adic representations, J. Number Theory 82, (2000), 1, 69–90. Zbl0989.11029MR1755154
  28. A. Panchishkin, Motives over totally real fields and p -adic L -functions, Ann. Inst. Fourier (Grenoble) 44, (1994), 4, 989–1023. Zbl0808.11034MR1306547
  29. R. Pollack, On the p -adic L -function of a modular form at a supersingular prime, Duke Math. J. 118, (2003), 3, 523–558. Zbl1074.11061MR1983040
  30. R. Pollack and Karl Rubin, The main conjecture for CM elliptic curves at supersingular primes, Ann. of Math. (2) 159 (2004), 1, 447–464. Zbl1082.11035MR2052361
  31. B. Perrin-Riou, Théorie d’Iwasawa des représentations p -adiques sur un corps local, Invent. Math. 115 (1994), 1, 81–161. Zbl0838.11071MR1248080
  32. K. A. Ribet, Galois representations attached to eigenforms with Nebentypus, Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Springer, Berlin, 1977, 17–51. Lecture Notes in Math., Vol. 601. Zbl0363.10015MR453647
  33. T. Saito, Modular forms and p -adic Hodge theory, Invent. Math. 129 (1997), 3, 607–620. Zbl0877.11034MR1465337
  34. C.-G. Schmidt, p -adic measures attached to automorphic representations of GL ( 3 ) , Invent. Math. 92 (1988), 3, 597–631. Zbl0656.10023MR939477
  35. E. Urban, Groupes de Selmer et fonctions L p -adiques pour les représentations modulaires adjointes. Available at http://www.math.columbia.edu/~urban/EURP.html, 2006. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.