# The problem of dynamic cavitation in nonlinear elasticity

Jan Giesselmann^{[1]}; Alexey Miroshnikov^{[2]}; Athanasios E. Tzavaras^{[3]}

- [1] Weierstrass Institute Berlin Germany
- [2] Department of Mathematics and Statistics University of Massachusetts Amherst USA
- [3] Department of Applied Mathematics University of Crete Heraklion Greece and Institute for Applied and Computational Mathematics FORTH Heraklion Greece

Séminaire Laurent Schwartz — EDP et applications (2012-2013)

- Volume: 2012-2013, page 1-17
- ISSN: 2266-0607

## Access Full Article

top## Abstract

top## How to cite

topGiesselmann, Jan, Miroshnikov, Alexey, and Tzavaras, Athanasios E.. "The problem of dynamic cavitation in nonlinear elasticity." Séminaire Laurent Schwartz — EDP et applications 2012-2013 (2012-2013): 1-17. <http://eudml.org/doc/275791>.

@article{Giesselmann2012-2013,

abstract = {The notion of singular limiting induced from continuum solutions (slic-solutions) is applied to the problem of cavitation in nonlinear elasticity, in order to re-assess an example of non-uniqueness of entropic weak solutions (with polyconvex energy) due to a forming cavity.},

affiliation = {Weierstrass Institute Berlin Germany; Department of Mathematics and Statistics University of Massachusetts Amherst USA; Department of Applied Mathematics University of Crete Heraklion Greece and Institute for Applied and Computational Mathematics FORTH Heraklion Greece},

author = {Giesselmann, Jan, Miroshnikov, Alexey, Tzavaras, Athanasios E.},

journal = {Séminaire Laurent Schwartz — EDP et applications},

language = {eng},

pages = {1-17},

publisher = {Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique},

title = {The problem of dynamic cavitation in nonlinear elasticity},

url = {http://eudml.org/doc/275791},

volume = {2012-2013},

year = {2012-2013},

}

TY - JOUR

AU - Giesselmann, Jan

AU - Miroshnikov, Alexey

AU - Tzavaras, Athanasios E.

TI - The problem of dynamic cavitation in nonlinear elasticity

JO - Séminaire Laurent Schwartz — EDP et applications

PY - 2012-2013

PB - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique

VL - 2012-2013

SP - 1

EP - 17

AB - The notion of singular limiting induced from continuum solutions (slic-solutions) is applied to the problem of cavitation in nonlinear elasticity, in order to re-assess an example of non-uniqueness of entropic weak solutions (with polyconvex energy) due to a forming cavity.

LA - eng

UR - http://eudml.org/doc/275791

ER -

## References

top- J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal.63 (1977), 337-403. Zbl0368.73040MR475169
- J.M. Ball, J.C. Currie and P.J. Olver Null Lagrangians, weak continuity, and variational problems of arbitrary order J. Functional Analysis41 (1981), 135-174. Zbl0459.35020MR615159
- J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A, 306, (1982) 557–611. Zbl0513.73020MR703623
- C. Dafermos, Quasilinear hyperbolic systems with involutions, Arch. Rational Mech. Anal.94 (1986), 373-389. Zbl0614.35057MR846895
- S. Demoulini, D.M.A. Stuart, A.E. Tzavaras, A variational approximation scheme for three-dimensional elastodynamics with polyconvex energy, Arch. Rational Mech. Anal.157 (2001), 325-344. Zbl0985.74024MR1831175
- D.G.B. Edelen, The null set of the Euler-Lagrange operator Arch. Rational Mech. Anal.11 (1962), 117-121. Zbl0125.33002MR150623
- J.L. Ericksen, Nilpotent energies in liquid crystal theories, Arch. Rational Mech. Anal.10 (1962), 189-196. Zbl0109.23002MR169513
- J. Giesselmann and A.E. Tzavaras, Singular limiting induced from continuum solutions and the problem of dynamic cavitation. (submitted), (2013), http://arxiv.org/abs/1306.6084. Zbl1293.35322
- A. Miroshnikov and A.E. Tzavaras, A variational approximation scheme for polyconvex elastodynamics that preserves the positivity of Jacobians. Comm. Math. Sciences10 (2012), 87-115. Zbl1275.35008MR2901302
- A. Miroshnikov and A.E. Tzavaras, On the construction and properties of weak solutions describing dynamic cavitation. (preprint). Zbl1314.35185MR2901302
- K.A. Pericak-Spector and S.J. Spector, Nonuniqueness for a hyperbolic system: cavitation in nonlinear elastodynamics. Arch. Rational Mech. Anal.101 (1988), 293 - 317. Zbl0651.73005MR930330
- K.A. Pericak-Spector and S.J. Spector, Dynamic cavitation with shocks in nonlinear elasticity. Proc. Royal Soc. Edinburgh Sect A127 (1997), 837 - 857. Zbl0883.73015MR1465424
- T. Qin, Symmetrizing nonlinear elastodynamic system, J. Elasticity50 (1998), 245-252. Zbl0919.73015MR1651340
- J. Sivaloganathan and S.J. Spector, Myriad radial cavitating equilibria in nonlinear elasticity. SIAM J. Appl. Math.63 (2003), 1461 - 1473. Zbl1045.74014MR1989912
- C. Truesdell, W. Noll, The non-linear field theories of mechanics, Handbuch der Physik III, 3 (Ed. S.Flügge), Springer Verlag, Berlin, 1965. Zbl0779.73004MR193816
- D.H. Wagner, Symmetric hyperbolic equations of motion for a hyper-elastic material, J. Hyper. Differential Equations6 (2009), 615-630. Zbl1180.35345MR2568811

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.