Sensitivity error bounds for non-exponential stochastic networks

Nico M. van Dijk

Kybernetika (1995)

  • Volume: 31, Issue: 2, page 175-188
  • ISSN: 0023-5954

How to cite

top

Dijk, Nico M. van. "Sensitivity error bounds for non-exponential stochastic networks." Kybernetika 31.2 (1995): 175-188. <http://eudml.org/doc/27580>.

@article{Dijk1995,
author = {Dijk, Nico M. van},
journal = {Kybernetika},
keywords = {stochastic service networks; continuous-state Markov reward recursion; tandem queueing network},
language = {eng},
number = {2},
pages = {175-188},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Sensitivity error bounds for non-exponential stochastic networks},
url = {http://eudml.org/doc/27580},
volume = {31},
year = {1995},
}

TY - JOUR
AU - Dijk, Nico M. van
TI - Sensitivity error bounds for non-exponential stochastic networks
JO - Kybernetika
PY - 1995
PB - Institute of Information Theory and Automation AS CR
VL - 31
IS - 2
SP - 175
EP - 188
LA - eng
KW - stochastic service networks; continuous-state Markov reward recursion; tandem queueing network
UR - http://eudml.org/doc/27580
ER -

References

top
  1. I. J. B. F. Adan, J. van der Wal, Monotonicity of the throughput of a closed queueing network in the number of jobs, Oper. Res. 57 (1989), 953-957. (1989) Zbl0696.60087MR1069884
  2. I. J. B. F. Adan, J. van der Wal, Monotonicity of the throughput in single server production and assembly networks with respect to the buffer sizes, In: Proceedings of the 1st International Workshop on Queueing Systems with Blocking. North-Holland 1989, pp. 345-356. (1989) 
  3. A. D. Barbour, Networks of queues and the method of stages, Adv. in Appl. Probab. 8 (1976), 584-591. (1976) Zbl0342.60065MR0440729
  4. J. W. Cohen, Sensitivity and insensitivity, Delft Progr. Rep. 5 (1980), 159-173. (1980) Zbl0452.60092MR0606025
  5. X. R. Cao, Convergence of parameter sensitivity estimates in a stochastic experiment, IEEE Trans. Automat. Control 30 (1985), 834-843. (1985) Zbl0574.62081MR0799478
  6. X. R. Cao, First-order perturbation analysis of a single multi-class finite source queue, Performance Evaluation 7 (1987), 31-41. (1987) MR0882859
  7. X. R. Cao, Y. C. Ho, Sensitivity estimate and optimization of throughput in a production line with blocking, IEEE Trans. Automat. Control 32 (1987), 959-967. (1987) MR0909965
  8. Y. C. Ho, C. Cassandras, Infinitesimal and finite perturbation analysis for queueing networks, Automatica 19 (1983), 4, 439-445. (1983) Zbl0514.90028
  9. Y. C. Ho, S. Li, Extensions of infinitesimal perturbation analysis, IEEE Trans. Automat. Control 33 (1988), 427-438. (1988) Zbl0637.90091MR0936266
  10. P. Glasserman, Y. C. Ho, Aggregation approximations for sensitivity analysis of multi-class queueing networks, Performance Evaluation. 
  11. A. Hordijk, N.M. van Dijk, Adjoint process, job-local balance and intensitivity of stochastic networks, Bull. 44th Session Int. Inst. 50 (1983), 776-788. (1983) MR0820735
  12. C. D. Meyer, Jr., The condition of a finite Markov chain and perturbation bounds for the limiting probabilities, SIAM J. Algebraic Discrete Methods 1 (1980), 273-283. (1980) Zbl0498.60071MR0586154
  13. J. R. Rohlicek, A. S. Willsky, The reduction of perturbed Markov generators: an algorithm exposing the role of transient states, J. Assoc. Comput. Mach. 35 (1988), 675-696. (1988) Zbl0643.60057MR0963167
  14. R. Schassberger, The intensitity of stationary probabilities in networks of queues, Adv. in Appl. Probab. 10 (1987), 906-912. (1987) MR0509223
  15. P. J. Schweitzer, Perturbation theory and finite Markov chains, J. Appl. Probab. 5 (1968), 401-413. (1968) MR0234527
  16. E. Seneta, Finite approximations to finite non-negative matrices, Cambridge Stud. Philos. 63 (1967), 983-992. (1967) MR0217874
  17. E. Seneta, The principles of truncations in applied probability, Comment. Math. Univ. Carolin. 9 (1968), 533-539. (1968) MR0235640
  18. E. Seneta, Non-Negative Matrices and Markov Chains, Springer Verlag, New York 1980. (1980) MR2209438
  19. J. G. Shantikumar, D. D. Yao, Stochastic monotonicity of the queue lengths in closed queueing networks, Oper. Res. 35 (1987), 583-588. (1987) MR0924950
  20. J. G. Shantikumar, D. D. Yao, Throughput bounds for closed queueing networks with queue-dependent service rates, Performance Evaluation 9 (1987), 69-78. (1987) MR0974496
  21. J. G. Shantikumar, D. D. Yao, Monotonicity properties in cycbc queueing networks with finite buffers, In: Proceedings of the First Int. Workshop on Queueing Networks with Blocking. North Carolina 1988. (1988) 
  22. D. Stoyan, Comparison Methods for Queues and Other Stochastic Models, J. Wiley, New. York 1983. (1983) Zbl0536.60085MR0754339
  23. R. Suri, A concept of monotonicity and its characterization for closed queueing networks, Oper. Res. 55 (1985), 606-024. (1985) Zbl0567.90040MR0791711
  24. R. Suri, Infinitesimal perturbation analysis for general discrete event systems, J. Assoc. Comput. Mach. 31, (1987), 3, 686-717. (1987) MR0904200
  25. R. Suri, Perturbation analysis. The state of the art and research issues explained via the GI/GI/1 queue, In: Proceedings of the IEEE. 
  26. H. C. Tijms, Stochastic Modelling and Analysis. A Computational Approach, J. Wiley, New York 1986. (1986) MR0847718
  27. P. Tsoucas, J. Walrand, Monotonicity of throughput in non-markovian networks, J. Appl. Probab. (1983). (1983) 
  28. N. M. van Dijk, A formal proof for the insensivity of simple bounds for finite multi-server non-exponential tandem queues based on monotonicity results, Stochastic Process. Appl. 27 (1988), 216-277. (1988) 
  29. N. M. van Dijk, Perturbation theory for unbounded Markov reward process with applications to queueing, Adv. in Appl. Probab. 20 (1988), 99-111. (1988) MR0932536
  30. N. M. van Dijk, Simple performance bounds for non-product form queueing networks, In: Proceedings of the First International Workshop on Queueing Networks with Blocking. North-Holland 1988, pp. 1-18. (1988) 
  31. N. M. van Dijk, Simple bounds for queueing systems with breakdowns, Performance Evaluation 7 (1988), 117-128. (1988) Zbl0698.90034MR0938482
  32. N. M. van Dijk, A simple throughput bound for large closed queueing networks with finite capacities, Performance Evaluation 10 (1988), 153-167. (1988) MR1032181
  33. N. M. van Dijk, A note on extended uniformization for non-exponential stochastic networks, J. Appl. Probab. 28 (1991), 955-961. (1991) Zbl0746.60088MR1133809
  34. N. M. van Dijk, B. F. Lamond, Bounds for the call congestion of finite single-server exponential tandem queues, Oper. Res. 36 (1988), 470-477. (1988) MR0955756
  35. N. M. van Dijk, M. L. Puterman, Perturbation theory for MarJcov reward processes with applications to queueing systems, Adv. in Appl. Probab. 20 (1988), 79-99. (1988) MR0932535
  36. N. M. van Dijk, J. van der Wal, Simple bounds and monotonicity results for multi-server exponential tandem queues, Queueing Systems Theory Appl. 4 (1989), 1-16. (1989) MR0980419
  37. E. W. B. van Marion, Influence of holding time distributions or blocking probabilities of a grading, TELE 20 (1968), 17-20. (1968) 
  38. W. Whitt, Comparing counting processes and queues, Adv. in Appl. Probab. 13 (1981), 207-220. (1981) Zbl0449.60064MR0595895
  39. W. Whitt, Stochastic comparison for non-Markov processes, Math. Oper. Res. 11 (1986), 4, 608-618. (1986) MR0865555
  40. P. Whittle, Partial balance and insensitivity, Adv. in Appl. Probab. 22 (1985), 168-175. (1985) Zbl0561.60095MR0776896

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.