Principalization algorithm via class group structure

Daniel C. Mayer[1]

  • [1] Naglergasse 53 8010 Graz Austria

Journal de Théorie des Nombres de Bordeaux (2014)

  • Volume: 26, Issue: 2, page 415-464
  • ISSN: 1246-7405

Abstract

top
For an algebraic number field K with 3 -class group Cl 3 ( K ) of type ( 3 , 3 ) , the structure of the 3 -class groups Cl 3 ( N i ) of the four unramified cyclic cubic extension fields N i , 1 i 4 , of K is calculated with the aid of presentations for the metabelian Galois group G 3 2 ( K ) = Gal ( F 3 2 ( K ) | K ) of the second Hilbert 3 -class field F 3 2 ( K ) of K . In the case of a quadratic base field K = ( D ) it is shown that the structure of the 3 -class groups of the four S 3 -fields N 1 , ... , N 4 frequently determines the type of principalization of the 3 -class group of K in N 1 , ... , N 4 . This provides an alternative to the classical principalization algorithm by Scholz and Taussky. The new algorithm, which is easily automatizable and executes very quickly, is implemented in PARI/GP and is applied to all 4 596 quadratic fields K with 3 -class group of type ( 3 , 3 ) and discriminant - 10 6 < D < 10 7 to obtain extensive statistics of their principalization types and the distribution of their second 3 -class groups G 3 2 ( K ) on various coclass trees of the coclass graphs 𝒢 ( 3 , r ) , 1 r 6 , in the sense of Eick, Leedham-Green, and Newman.

How to cite

top

Mayer, Daniel C.. "Principalization algorithm via class group structure." Journal de Théorie des Nombres de Bordeaux 26.2 (2014): 415-464. <http://eudml.org/doc/275803>.

@article{Mayer2014,
abstract = {For an algebraic number field $K$ with $3$-class group $\mathrm\{Cl\}_3(K)$ of type $(3,3)$, the structure of the $3$-class groups $\mathrm\{Cl\}_3(N_i)$ of the four unramified cyclic cubic extension fields $N_i$, $1\le i\le 4$, of $K$ is calculated with the aid of presentations for the metabelian Galois group $\mathrm\{G\}_3^2(K)=\mathrm\{Gal\}(\mathrm\{F\}_3^2(K)\vert K)$ of the second Hilbert $3$-class field $\mathrm\{F\}_3^2(K)$ of $K$. In the case of a quadratic base field $K=\mathbb\{Q\}(\sqrt\{D\})$ it is shown that the structure of the $3$-class groups of the four $S_3$-fields $N_1,\ldots ,N_4$ frequently determines the type of principalization of the $3$-class group of $K$ in $N_1,\ldots ,N_4$. This provides an alternative to the classical principalization algorithm by Scholz and Taussky. The new algorithm, which is easily automatizable and executes very quickly, is implemented in PARI/GP and is applied to all $4\,596$ quadratic fields $K$ with $3$-class group of type $(3,3)$ and discriminant $-10^6&lt;D&lt;10^7$ to obtain extensive statistics of their principalization types and the distribution of their second $3$-class groups $\mathrm\{G\}_3^2(K)$ on various coclass trees of the coclass graphs $\mathcal\{G\}(3,r)$, $1\le r\le 6$, in the sense of Eick, Leedham-Green, and Newman.},
affiliation = {Naglergasse 53 8010 Graz Austria},
author = {Mayer, Daniel C.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {$3$-class groups; principalization of $3$-classes; quadratic fields; cubic fields; $S_3$-fields; metabelian $3$-groups; coclass graphs; 3-class groups; principalization of 3-classes; $S_3$ -fields; metabelian 3-groups},
language = {eng},
month = {10},
number = {2},
pages = {415-464},
publisher = {Société Arithmétique de Bordeaux},
title = {Principalization algorithm via class group structure},
url = {http://eudml.org/doc/275803},
volume = {26},
year = {2014},
}

TY - JOUR
AU - Mayer, Daniel C.
TI - Principalization algorithm via class group structure
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/10//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 2
SP - 415
EP - 464
AB - For an algebraic number field $K$ with $3$-class group $\mathrm{Cl}_3(K)$ of type $(3,3)$, the structure of the $3$-class groups $\mathrm{Cl}_3(N_i)$ of the four unramified cyclic cubic extension fields $N_i$, $1\le i\le 4$, of $K$ is calculated with the aid of presentations for the metabelian Galois group $\mathrm{G}_3^2(K)=\mathrm{Gal}(\mathrm{F}_3^2(K)\vert K)$ of the second Hilbert $3$-class field $\mathrm{F}_3^2(K)$ of $K$. In the case of a quadratic base field $K=\mathbb{Q}(\sqrt{D})$ it is shown that the structure of the $3$-class groups of the four $S_3$-fields $N_1,\ldots ,N_4$ frequently determines the type of principalization of the $3$-class group of $K$ in $N_1,\ldots ,N_4$. This provides an alternative to the classical principalization algorithm by Scholz and Taussky. The new algorithm, which is easily automatizable and executes very quickly, is implemented in PARI/GP and is applied to all $4\,596$ quadratic fields $K$ with $3$-class group of type $(3,3)$ and discriminant $-10^6&lt;D&lt;10^7$ to obtain extensive statistics of their principalization types and the distribution of their second $3$-class groups $\mathrm{G}_3^2(K)$ on various coclass trees of the coclass graphs $\mathcal{G}(3,r)$, $1\le r\le 6$, in the sense of Eick, Leedham-Green, and Newman.
LA - eng
KW - $3$-class groups; principalization of $3$-classes; quadratic fields; cubic fields; $S_3$-fields; metabelian $3$-groups; coclass graphs; 3-class groups; principalization of 3-classes; $S_3$ -fields; metabelian 3-groups
UR - http://eudml.org/doc/275803
ER -

References

top
  1. E. Artin, Beweis des allgemeinen Reziprozitätsgesetzes, Abh. Math. Sem. Univ. Hamburg 5, (1927), 353–363. Zbl53.0144.04MR3069486
  2. E. Artin, Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz. Abh. Math. Sem. Univ. Hamburg 7, (1929), 46–51. Zbl55.0699.01MR3069515
  3. J. Ascione, G. Havas, and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order, Bull. Austral. Math. Soc. 17, (1977), 257–274, Corrigendum 317–319, Microfiche Supplement p. 320. Zbl0359.20018MR470038
  4. J. Ascione, On 3 -groups of second maximal class, Ph. D. Thesis, Australian National University, Canberra, (1979). Zbl0417.20022
  5. J. Ascione, On 3 -groups of second maximal class. Bull. Austral. Math. Soc., 21, (1980), 473–474. Zbl0417.20022
  6. G. Bagnera, La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo, Ann. di Mat., (Ser. 3) 1, (1898), 137–228. 
  7. K. Belabas, Topics in computational algebraic number theory. J. Théor. Nombres Bordeaux, 16, (2004), 19–63. Zbl1078.11071MR2145572
  8. H. U. Besche, B. Eick, and E. A. O’Brien, The SmallGroups Library — a Library of Groups of Small Order, (2005), an accepted and refereed GAP 4 package, available also in MAGMA. 
  9. N. Blackburn, On a special class of p -groups, Acta Math., 100, (1958), 45–92. Zbl0083.24802MR102558
  10. N. Blackburn, On prime-power groups in which the derived group has two generators, Proc. Camb. Phil. Soc., 53, (1957), 19–27. Zbl0077.03202MR81904
  11. J. R. Brink, The class field tower for imaginary quadratic number fields of type ( 3 , 3 ) , Dissertation, Ohio State University, (1984). 
  12. H. Dietrich, B. Eick, and D. Feichtenschlager, Investigating p -groups by coclass with GAP. Computational group theory and the theory of groups, Contemp. Math. 470, (2008), 45–61, AMS, Providence, RI. Zbl1167.20011MR2478413
  13. T. E. Easterfield, A classification of groups of order p 6 , Ph. D. Thesis, University of Cambridge, (1940). Zbl0024.01703
  14. B. Eick and D. Feichtenschlager, Infinite sequences of p -groups with fixed coclass, arXiv: 1006.0961 v1 [math.GR], 4 June 2010. Zbl1239.20020
  15. B. Eick and C. Leedham-Green, On the classification of prime-power groups by coclass. Bull. London Math. Soc., 40, (2008), 274–288. Zbl1168.20007MR2414786
  16. B. Eick, C.R. Leedham-Green, M.F. Newman, and E.A. O’Brien, On the classification of groups of prime-power order by coclass: The 3 -groups of coclass 2 , Int. J. Algebra Comput., 23, 5, (2013), 1243–1288. Zbl1298.20020MR3096320
  17. C. Fieker, Computing class fields via the Artin map, Math. Comp., 70, 235 (2001), 1293–1303. Zbl0982.11074MR1826583
  18. G. W. Fung and H. C. Williams, On the computation of a table of complex cubic fields with discriminant D &gt; - 10 6 , Math. Comp., 55, 191, (1990), 313–325. Zbl0705.11063MR1023760
  19. Ph. Furtwängler, Beweis des Hauptidealsatzes für die Klassenkörper algebraischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg, 7, (1929), 14–36. Zbl55.0699.02MR3069513
  20. The GAP Group, GAP – Groups, Algorithms, and Programming — a System for Computational Discrete Algebra, Version 4.4.12, Aachen, Braunschweig, Fort Collins, St. Andrews, (2008), http://www.gap-system.org. 
  21. P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc., (ser. 2) 36, (1933), 29–95. Zbl0007.29102MR1575964
  22. P. Hall, The classification of prime-power groups, J. Reine Angew. Math., 182, (1940), 130–141. Zbl0023.21001MR3389
  23. F.-P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math., 336, (1982), 1–25. Zbl0505.12016MR671319
  24. R. James, The groups of order p 6 ( p an odd prime), Math. Comp., 34, 150, (1980), 613–637. Zbl0428.20013MR559207
  25. H. Kisilevsky, Some results related to Hilbert’s theorem 94 , J. Number Theory, 2, (1970), 199–206. Zbl0216.04701MR258793
  26. C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, London Math. Soc. Monographs, New Series, 27, (2002) Oxford Univ. Press. Zbl1008.20001MR1918951
  27. C. R. Leedham-Green and M. F. Newman, Space groups and groups of prime power order I, Arch. Math., 35, (1980), 193–203. Zbl0437.20016MR583590
  28. P. Llorente and J. Quer, On totally real cubic fields with discriminant D &lt; 10 7 , Math. Comp., 50,182, (1988), 581–594. Zbl0651.12001MR929555
  29. D. C. Mayer, Principalization in complex S 3 -fields, Congressus Numerantium, 80, (1991), 73–87. (Proceedings of the Twentieth Manitoba Conference on Numerical Mathematics and Computing, Winnipeg, Manitoba, Canada, 1990). Zbl0733.11037MR1124863
  30. D. C. Mayer, List of discriminants d L &lt; 200 000 of totally real cubic fields L , arranged according to their multiplicities m and conductors f , Computer Centre, Department of Computer Science, University of Manitoba, Winnipeg, Canada, (1991). 
  31. D. C. Mayer, The second p -class group of a number field, Int. J. Number Theory, 8, 2, (2012), 471–505, DOI 10.1142/S179304211250025X. Zbl1261.11070MR2890488
  32. D. C. Mayer, Transfers of metabelian p -groups, Monatsh. Math., 166, 3–4, (2012), 467–495, DOI 10.1007/s00605-010-0277-x. Zbl1261.11071MR2925150
  33. D. C. Mayer, Multiplicities of dihedral discriminants, Math. Comp., 58, 198, (1992), 831–847 and S55–S58. Zbl0737.11028MR1122071
  34. D. C. Mayer, The distribution of second p -class groups on coclass graphs, J. Théor. Nombres Bordeaux, 25, 2, (2013), 401–456. (27th Journées Arithmétiques, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania, 2011). Zbl1292.11126MR3228314
  35. D. C. Mayer, Metabelian 3 -groups with abelianization of type ( 9 , 3 ) , Preprint, (2011). 
  36. R. J. Miech, Metabelian p -groups of maximal class, Trans. Amer. Math. Soc., 152, (1970), 331–373. Zbl0249.20009MR276343
  37. B. Nebelung, Klassifikation metabelscher 3 -Gruppen mit Faktorkommutatorgruppe vom Typ ( 3 , 3 ) und Anwendung auf das Kapitulationsproblem, Inauguraldissertation, Band 1, Universität zu Köln, (1989). 
  38. B. Nebelung, Anhang zu Klassifikation metabelscher 3 -Gruppen mit Faktorkommutatorgruppe vom Typ ( 3 , 3 ) und Anwendung auf das Kapitulationsproblem, Inauguraldissertation, Band 2, Universität zu Köln, (1989). 
  39. The PARI Group, PARI/GP computer algebra system, Version 2.3.4, Bordeaux, (2008), http://pari.math.u-bordeaux.fr. 
  40. A. Scholz, Idealklassen und Einheiten in kubischen Körpern, Monatsh. Math. Phys., 40, (1933), 211–222. Zbl0007.00301MR1550202
  41. A. Scholz und O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm, J. Reine Angew. Math., 171, (1934), 19–41. Zbl0009.10202
  42. O. Schreier, Über die Erweiterung von Gruppen II, Abh. Math. Sem. Univ. Hamburg, 4, (1926), 321–346. Zbl52.0113.04MR3069457
  43. O. Taussky, A remark concerning Hilbert’s Theorem 94 , J. Reine Angew. Math., 239/240, (1970), 435–438. Zbl0186.09002MR279070
  44. G. F. Voronoĭ, O tselykh algebraicheskikh chislakh zavisyashchikh ot kornya uravneniya tretʼeĭ stepeni, Sanktpeterburg, Master’s Thesis (Russian), (1894). Engl. transl. of title: Concerning algebraic integers derivable from a root of an equation of the third degree. 
  45. G. F. Voronoĭ, Ob odnom obobshchenii algorifma nepreryvnykh drobeĭ. Varshava, Doctoral Dissertation (Russian), (1896). Engl. transl. of title: On a generalization of the algorithm of continued fractions, Summary (by Wassilieff): Jahrb. Fortschr. Math. 27, (1896), 170–174. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.