Principalization algorithm via class group structure
- [1] Naglergasse 53 8010 Graz Austria
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 2, page 415-464
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topMayer, Daniel C.. "Principalization algorithm via class group structure." Journal de Théorie des Nombres de Bordeaux 26.2 (2014): 415-464. <http://eudml.org/doc/275803>.
@article{Mayer2014,
abstract = {For an algebraic number field $K$ with $3$-class group $\mathrm\{Cl\}_3(K)$ of type $(3,3)$, the structure of the $3$-class groups $\mathrm\{Cl\}_3(N_i)$ of the four unramified cyclic cubic extension fields $N_i$, $1\le i\le 4$, of $K$ is calculated with the aid of presentations for the metabelian Galois group $\mathrm\{G\}_3^2(K)=\mathrm\{Gal\}(\mathrm\{F\}_3^2(K)\vert K)$ of the second Hilbert $3$-class field $\mathrm\{F\}_3^2(K)$ of $K$. In the case of a quadratic base field $K=\mathbb\{Q\}(\sqrt\{D\})$ it is shown that the structure of the $3$-class groups of the four $S_3$-fields $N_1,\ldots ,N_4$ frequently determines the type of principalization of the $3$-class group of $K$ in $N_1,\ldots ,N_4$. This provides an alternative to the classical principalization algorithm by Scholz and Taussky. The new algorithm, which is easily automatizable and executes very quickly, is implemented in PARI/GP and is applied to all $4\,596$ quadratic fields $K$ with $3$-class group of type $(3,3)$ and discriminant $-10^6<D<10^7$ to obtain extensive statistics of their principalization types and the distribution of their second $3$-class groups $\mathrm\{G\}_3^2(K)$ on various coclass trees of the coclass graphs $\mathcal\{G\}(3,r)$, $1\le r\le 6$, in the sense of Eick, Leedham-Green, and Newman.},
affiliation = {Naglergasse 53 8010 Graz Austria},
author = {Mayer, Daniel C.},
journal = {Journal de Théorie des Nombres de Bordeaux},
keywords = {$3$-class groups; principalization of $3$-classes; quadratic fields; cubic fields; $S_3$-fields; metabelian $3$-groups; coclass graphs; 3-class groups; principalization of 3-classes; $S_3$ -fields; metabelian 3-groups},
language = {eng},
month = {10},
number = {2},
pages = {415-464},
publisher = {Société Arithmétique de Bordeaux},
title = {Principalization algorithm via class group structure},
url = {http://eudml.org/doc/275803},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Mayer, Daniel C.
TI - Principalization algorithm via class group structure
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/10//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 2
SP - 415
EP - 464
AB - For an algebraic number field $K$ with $3$-class group $\mathrm{Cl}_3(K)$ of type $(3,3)$, the structure of the $3$-class groups $\mathrm{Cl}_3(N_i)$ of the four unramified cyclic cubic extension fields $N_i$, $1\le i\le 4$, of $K$ is calculated with the aid of presentations for the metabelian Galois group $\mathrm{G}_3^2(K)=\mathrm{Gal}(\mathrm{F}_3^2(K)\vert K)$ of the second Hilbert $3$-class field $\mathrm{F}_3^2(K)$ of $K$. In the case of a quadratic base field $K=\mathbb{Q}(\sqrt{D})$ it is shown that the structure of the $3$-class groups of the four $S_3$-fields $N_1,\ldots ,N_4$ frequently determines the type of principalization of the $3$-class group of $K$ in $N_1,\ldots ,N_4$. This provides an alternative to the classical principalization algorithm by Scholz and Taussky. The new algorithm, which is easily automatizable and executes very quickly, is implemented in PARI/GP and is applied to all $4\,596$ quadratic fields $K$ with $3$-class group of type $(3,3)$ and discriminant $-10^6<D<10^7$ to obtain extensive statistics of their principalization types and the distribution of their second $3$-class groups $\mathrm{G}_3^2(K)$ on various coclass trees of the coclass graphs $\mathcal{G}(3,r)$, $1\le r\le 6$, in the sense of Eick, Leedham-Green, and Newman.
LA - eng
KW - $3$-class groups; principalization of $3$-classes; quadratic fields; cubic fields; $S_3$-fields; metabelian $3$-groups; coclass graphs; 3-class groups; principalization of 3-classes; $S_3$ -fields; metabelian 3-groups
UR - http://eudml.org/doc/275803
ER -
References
top- E. Artin, Beweis des allgemeinen Reziprozitätsgesetzes, Abh. Math. Sem. Univ. Hamburg 5, (1927), 353–363. Zbl53.0144.04MR3069486
- E. Artin, Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz. Abh. Math. Sem. Univ. Hamburg 7, (1929), 46–51. Zbl55.0699.01MR3069515
- J. Ascione, G. Havas, and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order, Bull. Austral. Math. Soc. 17, (1977), 257–274, Corrigendum 317–319, Microfiche Supplement p. 320. Zbl0359.20018MR470038
- J. Ascione, On -groups of second maximal class, Ph. D. Thesis, Australian National University, Canberra, (1979). Zbl0417.20022
- J. Ascione, On -groups of second maximal class. Bull. Austral. Math. Soc., 21, (1980), 473–474. Zbl0417.20022
- G. Bagnera, La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo, Ann. di Mat., (Ser. 3) 1, (1898), 137–228.
- K. Belabas, Topics in computational algebraic number theory. J. Théor. Nombres Bordeaux, 16, (2004), 19–63. Zbl1078.11071MR2145572
- H. U. Besche, B. Eick, and E. A. O’Brien, The SmallGroups Library — a Library of Groups of Small Order, (2005), an accepted and refereed GAP 4 package, available also in MAGMA.
- N. Blackburn, On a special class of -groups, Acta Math., 100, (1958), 45–92. Zbl0083.24802MR102558
- N. Blackburn, On prime-power groups in which the derived group has two generators, Proc. Camb. Phil. Soc., 53, (1957), 19–27. Zbl0077.03202MR81904
- J. R. Brink, The class field tower for imaginary quadratic number fields of type , Dissertation, Ohio State University, (1984).
- H. Dietrich, B. Eick, and D. Feichtenschlager, Investigating -groups by coclass with GAP. Computational group theory and the theory of groups, Contemp. Math. 470, (2008), 45–61, AMS, Providence, RI. Zbl1167.20011MR2478413
- T. E. Easterfield, A classification of groups of order , Ph. D. Thesis, University of Cambridge, (1940). Zbl0024.01703
- B. Eick and D. Feichtenschlager, Infinite sequences of -groups with fixed coclass, arXiv: 1006.0961 v1 [math.GR], 4 June 2010. Zbl1239.20020
- B. Eick and C. Leedham-Green, On the classification of prime-power groups by coclass. Bull. London Math. Soc., 40, (2008), 274–288. Zbl1168.20007MR2414786
- B. Eick, C.R. Leedham-Green, M.F. Newman, and E.A. O’Brien, On the classification of groups of prime-power order by coclass: The -groups of coclass , Int. J. Algebra Comput., 23, 5, (2013), 1243–1288. Zbl1298.20020MR3096320
- C. Fieker, Computing class fields via the Artin map, Math. Comp., 70, 235 (2001), 1293–1303. Zbl0982.11074MR1826583
- G. W. Fung and H. C. Williams, On the computation of a table of complex cubic fields with discriminant , Math. Comp., 55, 191, (1990), 313–325. Zbl0705.11063MR1023760
- Ph. Furtwängler, Beweis des Hauptidealsatzes für die Klassenkörper algebraischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg, 7, (1929), 14–36. Zbl55.0699.02MR3069513
- The GAP Group, GAP – Groups, Algorithms, and Programming — a System for Computational Discrete Algebra, Version 4.4.12, Aachen, Braunschweig, Fort Collins, St. Andrews, (2008), http://www.gap-system.org.
- P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc., (ser. 2) 36, (1933), 29–95. Zbl0007.29102MR1575964
- P. Hall, The classification of prime-power groups, J. Reine Angew. Math., 182, (1940), 130–141. Zbl0023.21001MR3389
- F.-P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math., 336, (1982), 1–25. Zbl0505.12016MR671319
- R. James, The groups of order ( an odd prime), Math. Comp., 34, 150, (1980), 613–637. Zbl0428.20013MR559207
- H. Kisilevsky, Some results related to Hilbert’s theorem , J. Number Theory, 2, (1970), 199–206. Zbl0216.04701MR258793
- C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, London Math. Soc. Monographs, New Series, 27, (2002) Oxford Univ. Press. Zbl1008.20001MR1918951
- C. R. Leedham-Green and M. F. Newman, Space groups and groups of prime power order I, Arch. Math., 35, (1980), 193–203. Zbl0437.20016MR583590
- P. Llorente and J. Quer, On totally real cubic fields with discriminant , Math. Comp., 50,182, (1988), 581–594. Zbl0651.12001MR929555
- D. C. Mayer, Principalization in complex -fields, Congressus Numerantium, 80, (1991), 73–87. (Proceedings of the Twentieth Manitoba Conference on Numerical Mathematics and Computing, Winnipeg, Manitoba, Canada, 1990). Zbl0733.11037MR1124863
- D. C. Mayer, List of discriminants of totally real cubic fields , arranged according to their multiplicities and conductors , Computer Centre, Department of Computer Science, University of Manitoba, Winnipeg, Canada, (1991).
- D. C. Mayer, The second -class group of a number field, Int. J. Number Theory, 8, 2, (2012), 471–505, DOI 10.1142/S179304211250025X. Zbl1261.11070MR2890488
- D. C. Mayer, Transfers of metabelian -groups, Monatsh. Math., 166, 3–4, (2012), 467–495, DOI 10.1007/s00605-010-0277-x. Zbl1261.11071MR2925150
- D. C. Mayer, Multiplicities of dihedral discriminants, Math. Comp., 58, 198, (1992), 831–847 and S55–S58. Zbl0737.11028MR1122071
- D. C. Mayer, The distribution of second -class groups on coclass graphs, J. Théor. Nombres Bordeaux, 25, 2, (2013), 401–456. (27th Journées Arithmétiques, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania, 2011). Zbl1292.11126MR3228314
- D. C. Mayer, Metabelian -groups with abelianization of type , Preprint, (2011).
- R. J. Miech, Metabelian -groups of maximal class, Trans. Amer. Math. Soc., 152, (1970), 331–373. Zbl0249.20009MR276343
- B. Nebelung, Klassifikation metabelscher -Gruppen mit Faktorkommutatorgruppe vom Typ und Anwendung auf das Kapitulationsproblem, Inauguraldissertation, Band 1, Universität zu Köln, (1989).
- B. Nebelung, Anhang zu Klassifikation metabelscher -Gruppen mit Faktorkommutatorgruppe vom Typ und Anwendung auf das Kapitulationsproblem, Inauguraldissertation, Band 2, Universität zu Köln, (1989).
- The PARI Group, PARI/GP computer algebra system, Version 2.3.4, Bordeaux, (2008), http://pari.math.u-bordeaux.fr.
- A. Scholz, Idealklassen und Einheiten in kubischen Körpern, Monatsh. Math. Phys., 40, (1933), 211–222. Zbl0007.00301MR1550202
- A. Scholz und O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm, J. Reine Angew. Math., 171, (1934), 19–41. Zbl0009.10202
- O. Schreier, Über die Erweiterung von Gruppen II, Abh. Math. Sem. Univ. Hamburg, 4, (1926), 321–346. Zbl52.0113.04MR3069457
- O. Taussky, A remark concerning Hilbert’s Theorem , J. Reine Angew. Math., 239/240, (1970), 435–438. Zbl0186.09002MR279070
- G. F. Voronoĭ, O tselykh algebraicheskikh chislakh zavisyashchikh ot kornya uravneniya tretʼeĭ stepeni, Sanktpeterburg, Master’s Thesis (Russian), (1894). Engl. transl. of title: Concerning algebraic integers derivable from a root of an equation of the third degree.
- G. F. Voronoĭ, Ob odnom obobshchenii algorifma nepreryvnykh drobeĭ. Varshava, Doctoral Dissertation (Russian), (1896). Engl. transl. of title: On a generalization of the algorithm of continued fractions, Summary (by Wassilieff): Jahrb. Fortschr. Math. 27, (1896), 170–174.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.