What is a monotone Lagrangian cobordism?

François Charette[1]

  • [1] Max Planck Institute for Mathematics Vivatsgasse 7 53111 Bonn (Germany)

Séminaire de théorie spectrale et géométrie (2012-2014)

  • Volume: 31, page 43-53
  • ISSN: 1624-5458

Abstract

top
We explain the notion of Lagrangian cobordism. A flexibility/rigidity dichotomy is illustrated by considering Lagrangian tori in 2 . Towards the end, we present a recent construction by Cornea and the author [8], of monotone cobordisms that are not trivial in a suitable sense.

How to cite

top

Charette, François. "What is a monotone Lagrangian cobordism?." Séminaire de théorie spectrale et géométrie 31 (2012-2014): 43-53. <http://eudml.org/doc/275818>.

@article{Charette2012-2014,
abstract = {We explain the notion of Lagrangian cobordism. A flexibility/rigidity dichotomy is illustrated by considering Lagrangian tori in $\mathbb\{C\}^2$. Towards the end, we present a recent construction by Cornea and the author [8], of monotone cobordisms that are not trivial in a suitable sense.},
affiliation = {Max Planck Institute for Mathematics Vivatsgasse 7 53111 Bonn (Germany)},
author = {Charette, François},
journal = {Séminaire de théorie spectrale et géométrie},
language = {eng},
pages = {43-53},
publisher = {Institut Fourier},
title = {What is a monotone Lagrangian cobordism?},
url = {http://eudml.org/doc/275818},
volume = {31},
year = {2012-2014},
}

TY - JOUR
AU - Charette, François
TI - What is a monotone Lagrangian cobordism?
JO - Séminaire de théorie spectrale et géométrie
PY - 2012-2014
PB - Institut Fourier
VL - 31
SP - 43
EP - 53
AB - We explain the notion of Lagrangian cobordism. A flexibility/rigidity dichotomy is illustrated by considering Lagrangian tori in $\mathbb{C}^2$. Towards the end, we present a recent construction by Cornea and the author [8], of monotone cobordisms that are not trivial in a suitable sense.
LA - eng
UR - http://eudml.org/doc/275818
ER -

References

top
  1. V. I. Arnol’d, Lagrange and Legendre cobordisms. I, Funktsional. Anal. i Prilozhen. 14 (1980), 1-13, 96 Zbl0448.57017MR583797
  2. V. I. Arnol’d, Lagrange and Legendre cobordisms. II, Funktsional. Anal. i Prilozhen. 14 (1980), 8-17, 95 Zbl0472.55002MR595724
  3. V. I. Arnol’d, Mathematical methods of classical mechanics, 60 (1995), Springer-Verlag, New York Zbl0386.70001MR997295
  4. Michèle Audin, Cobordismes d’immersions lagrangiennes et legendriennes, 20 (1987), Hermann, Paris Zbl0615.57001MR903652
  5. Denis Auroux, Mirror symmetry and T -duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. GGT 1 (2007), 51-91 Zbl1181.53076MR2386535
  6. Paul Biran, Octav Cornea, Lagrangian cobordism. I, J. Amer. Math. Soc. 26 (2013), 295-340 Zbl1272.53071MR3011416
  7. Paul Biran, Octav Cornea, Lagrangian cobordism and Fukaya categories, Geom. Funct. Anal. 24 (2014), 1731-1830 Zbl1306.55003MR3283928
  8. Francois Charette, Octav Cornea, Categorification of Seidel’s representation, (2014) Zbl06571633
  9. Yu. V. Chekanov, Lagrangian embeddings and Lagrangian cobordism, Topics in singularity theory 180 (1997), 13-23, Amer. Math. Soc., Providence, RI Zbl0933.53038MR1767110
  10. Yuri Chekanov, Felix Schlenk, Notes on monotone Lagrangian twist tori, Electron. Res. Announc. Math. Sci. 17 (2010), 104-121 Zbl1201.53083MR2735030
  11. J. Eliashberg, Cobordisme des solutions de relations différentielles, South Rhone seminar on geometry, I (Lyon, 1983) (1984), 17-31, Hermann, Paris Zbl0542.57024MR753850
  12. Urs Frauenfelder, Gromov convergence of pseudoholomorphic disks, J. Fixed Point Theory Appl. 3 (2008), 215-271 Zbl1153.53057MR2434448
  13. Mikhael Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307-347 Zbl0592.53025MR809718
  14. Mikhael Gromov, Partial differential relations, 9 (1986), Springer-Verlag, Berlin Zbl0651.53001MR864505
  15. Clement Hyvrier, Lagrangian circle actions, (2013) 
  16. J. Alexander Lees, On the classification of Lagrange immersions, Duke Math. J. 43 (1976), 217-224 Zbl0329.58006MR410764
  17. Dusa McDuff, Dietmar Salamon, Introduction to symplectic topology, (1998), The Clarendon Press, Oxford University Press, New York Zbl0844.58029MR1698616
  18. Leonid Polterovich, The surgery of Lagrange submanifolds, Geom. Funct. Anal. 1 (1991), 198-210 Zbl0754.57027MR1097259
  19. Leonid Polterovich, The geometry of the group of symplectic diffeomorphisms, (2001), Birkhäuser Verlag, Basel Zbl1197.53003MR1826128

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.