A local large sieve inequality for cusp forms
- [1] Department of Mathematics The Ohio State University 100 Math Tower, 231 West 18th Avenue Columbus, OH 43210-1174
Journal de Théorie des Nombres de Bordeaux (2014)
- Volume: 26, Issue: 3, page 757-787
- ISSN: 1246-7405
Access Full Article
topAbstract
topHow to cite
topLam, Jonathan Wing Chung. "A local large sieve inequality for cusp forms." Journal de Théorie des Nombres de Bordeaux 26.3 (2014): 757-787. <http://eudml.org/doc/275821>.
@article{Lam2014,
abstract = {We prove a large sieve type inequality for Maass forms and holomorphic cusp forms with level greater or equal to one and of integral or half-integral weight in short interval.},
affiliation = {Department of Mathematics The Ohio State University 100 Math Tower, 231 West 18th Avenue Columbus, OH 43210-1174},
author = {Lam, Jonathan Wing Chung},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {12},
number = {3},
pages = {757-787},
publisher = {Société Arithmétique de Bordeaux},
title = {A local large sieve inequality for cusp forms},
url = {http://eudml.org/doc/275821},
volume = {26},
year = {2014},
}
TY - JOUR
AU - Lam, Jonathan Wing Chung
TI - A local large sieve inequality for cusp forms
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/12//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 3
SP - 757
EP - 787
AB - We prove a large sieve type inequality for Maass forms and holomorphic cusp forms with level greater or equal to one and of integral or half-integral weight in short interval.
LA - eng
UR - http://eudml.org/doc/275821
ER -
References
top- J. Cogdell and P. Michel, On the complex moments of symmetric power L-functions at s=1, Int. Math. Res. Not. 31, (2004), 1561–1617. Zbl1093.11032MR2035301
- J.M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier cofficients of cusp forms, Invent. Math. 70, (1982), 219–288. Zbl0502.10021MR684172
- W. Duke, J.B. Frielander and H. Iwaniec, Bounds for Automorphic L-functions II, Invent. Math. 115, (1994), 219–239. Zbl0812.11032MR1258904
- H. Iwaniec, Mean values for Fourier coefficients of cusp forms and sums of Kloosterman sums, Journées Arithmetiqués de Exeter, (1980), 306–321. Zbl0494.10035MR697274
- H. Iwaniec, Spectral Methods of Automorphic Forms, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, (2002). Zbl1006.11024MR1942691
- H. Iwaniec and P. Michel, The second moment of the symmetric square L-functions, Ann. Acad. Sci. Fenn. Math. 2, (2001), 465–482. Zbl1075.11040MR1833252
- H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematics Society Colloquium Publications, Amer. Math. Soc., Providence, RI, (2004). Zbl1059.11001MR2061214
- H. Iwaniec, W. Luo and P. Sarnak, P., Low lying zeros of families of L-functions, I.H.E.S. Publ. Math., 91, (2000), 55–131. Zbl1012.11041MR1828743
- M. Jutila, On spectral large sieve inequalities, Functiones et Approximatio 28, (2000), 7–18. Zbl1007.11027MR1823989
- M. Jutila and Y. Motohashi, Uniform bound for Hecke L-functions, Acta. Math.195, (2005), 61–115. Zbl1098.11034MR2233686
- N.N. Lebedev, Special functions and their applications, Dover Books on Mathematics, (1972). Zbl0271.33001MR350075
- W. Luo, Spectral means-values of automorphic L-functions at special points, Analytic Number Theory, Proc. of a Conference in honor of Heini Halberstam, 70, (1982), 219–288. Zbl0866.11034
- W. Luo and P. Sarnak, Mass equidistribution for Hecke eigenforms, Comm. Pure Appl. Math., 56, (2003), 874–891. Zbl1044.11022MR1990480
- Y. Motohashi, Spectral Theory of the Riemann Zeta-Function, Merchant Books, (2008). Zbl1144.11003
- H.E. Richert, Lectures on Sieve Methods, Tata Institute of Fundamental Research, Bombay, (1976). Zbl0392.10041
- G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 127, (1997). Zbl0174.36202MR1349110
- Q. Zhang, A local large sieve inequality for the Maass cusp form. preprint.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.