A local large sieve inequality for cusp forms

Jonathan Wing Chung Lam[1]

  • [1] Department of Mathematics The Ohio State University 100 Math Tower, 231 West 18th Avenue Columbus, OH 43210-1174

Journal de Théorie des Nombres de Bordeaux (2014)

  • Volume: 26, Issue: 3, page 757-787
  • ISSN: 1246-7405

Abstract

top
We prove a large sieve type inequality for Maass forms and holomorphic cusp forms with level greater or equal to one and of integral or half-integral weight in short interval.

How to cite

top

Lam, Jonathan Wing Chung. "A local large sieve inequality for cusp forms." Journal de Théorie des Nombres de Bordeaux 26.3 (2014): 757-787. <http://eudml.org/doc/275821>.

@article{Lam2014,
abstract = {We prove a large sieve type inequality for Maass forms and holomorphic cusp forms with level greater or equal to one and of integral or half-integral weight in short interval.},
affiliation = {Department of Mathematics The Ohio State University 100 Math Tower, 231 West 18th Avenue Columbus, OH 43210-1174},
author = {Lam, Jonathan Wing Chung},
journal = {Journal de Théorie des Nombres de Bordeaux},
language = {eng},
month = {12},
number = {3},
pages = {757-787},
publisher = {Société Arithmétique de Bordeaux},
title = {A local large sieve inequality for cusp forms},
url = {http://eudml.org/doc/275821},
volume = {26},
year = {2014},
}

TY - JOUR
AU - Lam, Jonathan Wing Chung
TI - A local large sieve inequality for cusp forms
JO - Journal de Théorie des Nombres de Bordeaux
DA - 2014/12//
PB - Société Arithmétique de Bordeaux
VL - 26
IS - 3
SP - 757
EP - 787
AB - We prove a large sieve type inequality for Maass forms and holomorphic cusp forms with level greater or equal to one and of integral or half-integral weight in short interval.
LA - eng
UR - http://eudml.org/doc/275821
ER -

References

top
  1. J. Cogdell and P. Michel, On the complex moments of symmetric power L-functions at s=1, Int. Math. Res. Not. 31, (2004), 1561–1617.  Zbl1093.11032MR2035301
  2. J.M. Deshouillers and H. Iwaniec, Kloosterman sums and Fourier cofficients of cusp forms, Invent. Math. 70, (1982), 219–288. Zbl0502.10021MR684172
  3. W. Duke, J.B. Frielander and H. Iwaniec, Bounds for Automorphic L-functions II, Invent. Math. 115, (1994), 219–239. Zbl0812.11032MR1258904
  4. H. Iwaniec, Mean values for Fourier coefficients of cusp forms and sums of Kloosterman sums, Journées Arithmetiqués de Exeter, (1980), 306–321. Zbl0494.10035MR697274
  5. H. Iwaniec, Spectral Methods of Automorphic Forms, Graduate Studies in Mathematics, Amer. Math. Soc., Providence, RI, (2002). Zbl1006.11024MR1942691
  6. H. Iwaniec and P. Michel, The second moment of the symmetric square L-functions, Ann. Acad. Sci. Fenn. Math. 2, (2001), 465–482. Zbl1075.11040MR1833252
  7. H. Iwaniec and E. Kowalski, Analytic Number Theory, American Mathematics Society Colloquium Publications, Amer. Math. Soc., Providence, RI, (2004). Zbl1059.11001MR2061214
  8. H. Iwaniec, W. Luo and P. Sarnak, P., Low lying zeros of families of L-functions, I.H.E.S. Publ. Math., 91, (2000), 55–131. Zbl1012.11041MR1828743
  9. M. Jutila, On spectral large sieve inequalities, Functiones et Approximatio 28, (2000), 7–18. Zbl1007.11027MR1823989
  10. M. Jutila and Y. Motohashi, Uniform bound for Hecke L-functions, Acta. Math.195, (2005), 61–115. Zbl1098.11034MR2233686
  11. N.N. Lebedev, Special functions and their applications, Dover Books on Mathematics, (1972). Zbl0271.33001MR350075
  12. W. Luo, Spectral means-values of automorphic L-functions at special points, Analytic Number Theory, Proc. of a Conference in honor of Heini Halberstam, 70, (1982), 219–288. Zbl0866.11034
  13. W. Luo and P. Sarnak, Mass equidistribution for Hecke eigenforms, Comm. Pure Appl. Math., 56, (2003), 874–891. Zbl1044.11022MR1990480
  14. Y. Motohashi, Spectral Theory of the Riemann Zeta-Function, Merchant Books, (2008). Zbl1144.11003
  15. H.E. Richert, Lectures on Sieve Methods, Tata Institute of Fundamental Research, Bombay, (1976). Zbl0392.10041
  16. G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press, 127, (1997). Zbl0174.36202MR1349110
  17. Q. Zhang, A local large sieve inequality for the Maass cusp form. preprint. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.