Solutions of the constraint equations in general relativity satisfying "hyperboloidal boundary conditions"

Andersson Lars; Chruściel Piotr T.

  • 1996

Abstract

top
Abstract We prove existence of the solutions of the constraint equations satisfying "hyperboloidal boundary conditions" using the Choquet-Bruhat-Lichnerowicz-York conformal method and we analyze in detail their differentiability near the conformal boundary. We show that generic "hyperboloidal initial data" display asymptotic behaviour which is not compatible with Penrose's hypothesis of smoothness of ℐ. We also show that a large class of "non-generic" initial data satisfying Penrose smoothness conditions exists. The results are established by developing a theory of regularity up-to-boundary for a class of linear and semilinear elliptic systems of equations uniformly degenerating at the boundary. CONTENTS 1. Introduction .............................................................................................5 2. The hyperboloidal initial value problem....................................................9  2.1. Conformal compactifications and Cauchy data....................................9  2.2. Some remarks on non-vacuum initial data sets..................................14 3. Definitions, preliminary results................................................................16  3.1. Function spaces.................................................................................16  3.2. Some embeddings..............................................................................22  3.3. Extensions of functions defined on ∂M...............................................24  3.4. Mapping properties of some integral operators..................................26 4. Regularity at the boundary: the linear problem......................................30  4.1. Tangential regularity below the threshold...........................................30  4.2. Boundary regularity for a class of second order systems...................39 5. Non-linear equations with polyhomogeneous coefficients......................52  5.1. Polyhomogeneity of solutions of some fully non-linear equations.......52 6. The vector constraint equation...............................................................57  6.1. Introductory remarks..........................................................................57  6.2. (Non-weighted) Hölder spaces on the compactified manifold.............58  6.3. Weighted Sobolev spaces..................................................................66 7. The Lichnerowicz equation.....................................................................74  7.1. Introductory remarks..........................................................................74  7.2. The linearized equation.....................................................................76  7.3. Existence of solutions of the non-linear problem................................79  7.4. Regularity at the boundary of the solutions........................................81 Appendix A. Genericity of log-terms...........................................................87  A.1. The vector constraint equation..........................................................88  A.2. The coupled system...........................................................................91 Appendix B.................................................................................................94  B.1. "Almost Gaussian" coordinates..........................................................94 References................................................................................................96 Index of symbols........................................................................................99 Index of terms..........................................................................................100 1991 Mathematics Subject Classification: Primary 83C05, 35Q75, 53C21; Secondary 58G20, 35J60, 35J65.

How to cite

top

Andersson Lars, and Chruściel Piotr T.. Solutions of the constraint equations in general relativity satisfying "hyperboloidal boundary conditions". 1996. <http://eudml.org/doc/275822>.

@book{AnderssonLars1996,
abstract = { Abstract We prove existence of the solutions of the constraint equations satisfying "hyperboloidal boundary conditions" using the Choquet-Bruhat-Lichnerowicz-York conformal method and we analyze in detail their differentiability near the conformal boundary. We show that generic "hyperboloidal initial data" display asymptotic behaviour which is not compatible with Penrose's hypothesis of smoothness of ℐ. We also show that a large class of "non-generic" initial data satisfying Penrose smoothness conditions exists. The results are established by developing a theory of regularity up-to-boundary for a class of linear and semilinear elliptic systems of equations uniformly degenerating at the boundary. CONTENTS 1. Introduction .............................................................................................5 2. The hyperboloidal initial value problem....................................................9  2.1. Conformal compactifications and Cauchy data....................................9  2.2. Some remarks on non-vacuum initial data sets..................................14 3. Definitions, preliminary results................................................................16  3.1. Function spaces.................................................................................16  3.2. Some embeddings..............................................................................22  3.3. Extensions of functions defined on ∂M...............................................24  3.4. Mapping properties of some integral operators..................................26 4. Regularity at the boundary: the linear problem......................................30  4.1. Tangential regularity below the threshold...........................................30  4.2. Boundary regularity for a class of second order systems...................39 5. Non-linear equations with polyhomogeneous coefficients......................52  5.1. Polyhomogeneity of solutions of some fully non-linear equations.......52 6. The vector constraint equation...............................................................57  6.1. Introductory remarks..........................................................................57  6.2. (Non-weighted) Hölder spaces on the compactified manifold.............58  6.3. Weighted Sobolev spaces..................................................................66 7. The Lichnerowicz equation.....................................................................74  7.1. Introductory remarks..........................................................................74  7.2. The linearized equation.....................................................................76  7.3. Existence of solutions of the non-linear problem................................79  7.4. Regularity at the boundary of the solutions........................................81 Appendix A. Genericity of log-terms...........................................................87  A.1. The vector constraint equation..........................................................88  A.2. The coupled system...........................................................................91 Appendix B.................................................................................................94  B.1. "Almost Gaussian" coordinates..........................................................94 References................................................................................................96 Index of symbols........................................................................................99 Index of terms..........................................................................................100 1991 Mathematics Subject Classification: Primary 83C05, 35Q75, 53C21; Secondary 58G20, 35J60, 35J65.},
author = {Andersson Lars, Chruściel Piotr T.},
keywords = {hyperboloidal boundary conditions; existence; constraint equations; differentiability near the conformal boundary; asymptotic behaviour; regularity up-to-boundary},
language = {eng},
title = {Solutions of the constraint equations in general relativity satisfying "hyperboloidal boundary conditions"},
url = {http://eudml.org/doc/275822},
year = {1996},
}

TY - BOOK
AU - Andersson Lars
AU - Chruściel Piotr T.
TI - Solutions of the constraint equations in general relativity satisfying "hyperboloidal boundary conditions"
PY - 1996
AB - Abstract We prove existence of the solutions of the constraint equations satisfying "hyperboloidal boundary conditions" using the Choquet-Bruhat-Lichnerowicz-York conformal method and we analyze in detail their differentiability near the conformal boundary. We show that generic "hyperboloidal initial data" display asymptotic behaviour which is not compatible with Penrose's hypothesis of smoothness of ℐ. We also show that a large class of "non-generic" initial data satisfying Penrose smoothness conditions exists. The results are established by developing a theory of regularity up-to-boundary for a class of linear and semilinear elliptic systems of equations uniformly degenerating at the boundary. CONTENTS 1. Introduction .............................................................................................5 2. The hyperboloidal initial value problem....................................................9  2.1. Conformal compactifications and Cauchy data....................................9  2.2. Some remarks on non-vacuum initial data sets..................................14 3. Definitions, preliminary results................................................................16  3.1. Function spaces.................................................................................16  3.2. Some embeddings..............................................................................22  3.3. Extensions of functions defined on ∂M...............................................24  3.4. Mapping properties of some integral operators..................................26 4. Regularity at the boundary: the linear problem......................................30  4.1. Tangential regularity below the threshold...........................................30  4.2. Boundary regularity for a class of second order systems...................39 5. Non-linear equations with polyhomogeneous coefficients......................52  5.1. Polyhomogeneity of solutions of some fully non-linear equations.......52 6. The vector constraint equation...............................................................57  6.1. Introductory remarks..........................................................................57  6.2. (Non-weighted) Hölder spaces on the compactified manifold.............58  6.3. Weighted Sobolev spaces..................................................................66 7. The Lichnerowicz equation.....................................................................74  7.1. Introductory remarks..........................................................................74  7.2. The linearized equation.....................................................................76  7.3. Existence of solutions of the non-linear problem................................79  7.4. Regularity at the boundary of the solutions........................................81 Appendix A. Genericity of log-terms...........................................................87  A.1. The vector constraint equation..........................................................88  A.2. The coupled system...........................................................................91 Appendix B.................................................................................................94  B.1. "Almost Gaussian" coordinates..........................................................94 References................................................................................................96 Index of symbols........................................................................................99 Index of terms..........................................................................................100 1991 Mathematics Subject Classification: Primary 83C05, 35Q75, 53C21; Secondary 58G20, 35J60, 35J65.
LA - eng
KW - hyperboloidal boundary conditions; existence; constraint equations; differentiability near the conformal boundary; asymptotic behaviour; regularity up-to-boundary
UR - http://eudml.org/doc/275822
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.