Vector-valued multipliers: convolution with operator-valued measures
Gaudry G. I.; Ricker W. J.; Jefferies B. R. F.
- 2000
Access Full Book
topAbstract
topHow to cite
topGaudry G. I., Ricker W. J., and Jefferies B. R. F.. Vector-valued multipliers: convolution with operator-valued measures. 2000. <http://eudml.org/doc/275830>.
@book{GaudryG2000,
abstract = {
CONTENTS
Preface.........................................................................................................5
1. Introduction...............................................................................................6
1.1. Measurability and vector measures.....................................................6
1.2. Convolution and vector measures.....................................................12
1.3. Operator-valued measures................................................................14
2. Harmonic analysis....................................................................................17
2.1. Commutative harmonic analysis for vector-valued functions...............17
3. Convolution with respect to operator-valued measures...........................24
3.1. General theory....................................................................................24
3.2. Vector-valued p-multipliers..................................................................28
3.3. Characterising operator-valued Fourier-Stieltjes transforms..............44
3.4. Strong 1-multipliers.............................................................................47
3.5. Locally compact groups in general: Wendel's theorem.......................54
3.6. Costé's theorem..................................................................................57
4. Convolution with respect to spectral measures........................................60
4.1. General theory....................................................................................60
4.2. Translation: the canonical spectral measure on L²(G)........................65
4.3. Applications........................................................................................72
References..................................................................................................74
Index............................................................................................................76
2000 Mathematics Subject Classification: Primary 46G10, 42B15; Secondary 43A15, 43A05.},
author = {Gaudry G. I., Ricker W. J., Jefferies B. R. F.},
keywords = {multipliers; Fourier-Stieltjes transforms; spectral measures; Calderon-Zygmund theory; vector-valued singular integral operators; vector-valued convolution operators; Coste's theorem; Brenner's theorem},
language = {eng},
title = {Vector-valued multipliers: convolution with operator-valued measures},
url = {http://eudml.org/doc/275830},
year = {2000},
}
TY - BOOK
AU - Gaudry G. I.
AU - Ricker W. J.
AU - Jefferies B. R. F.
TI - Vector-valued multipliers: convolution with operator-valued measures
PY - 2000
AB -
CONTENTS
Preface.........................................................................................................5
1. Introduction...............................................................................................6
1.1. Measurability and vector measures.....................................................6
1.2. Convolution and vector measures.....................................................12
1.3. Operator-valued measures................................................................14
2. Harmonic analysis....................................................................................17
2.1. Commutative harmonic analysis for vector-valued functions...............17
3. Convolution with respect to operator-valued measures...........................24
3.1. General theory....................................................................................24
3.2. Vector-valued p-multipliers..................................................................28
3.3. Characterising operator-valued Fourier-Stieltjes transforms..............44
3.4. Strong 1-multipliers.............................................................................47
3.5. Locally compact groups in general: Wendel's theorem.......................54
3.6. Costé's theorem..................................................................................57
4. Convolution with respect to spectral measures........................................60
4.1. General theory....................................................................................60
4.2. Translation: the canonical spectral measure on L²(G)........................65
4.3. Applications........................................................................................72
References..................................................................................................74
Index............................................................................................................76
2000 Mathematics Subject Classification: Primary 46G10, 42B15; Secondary 43A15, 43A05.
LA - eng
KW - multipliers; Fourier-Stieltjes transforms; spectral measures; Calderon-Zygmund theory; vector-valued singular integral operators; vector-valued convolution operators; Coste's theorem; Brenner's theorem
UR - http://eudml.org/doc/275830
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.