Vector-valued multipliers: convolution with operator-valued measures

Gaudry G. I.; Ricker W. J.; Jefferies B. R. F.

  • 2000

Abstract

top
CONTENTS Preface.........................................................................................................5 1. Introduction...............................................................................................6   1.1. Measurability and vector measures.....................................................6   1.2. Convolution and vector measures.....................................................12   1.3. Operator-valued measures................................................................14 2. Harmonic analysis....................................................................................17   2.1. Commutative harmonic analysis for vector-valued functions...............17 3. Convolution with respect to operator-valued measures...........................24   3.1. General theory....................................................................................24   3.2. Vector-valued p-multipliers..................................................................28   3.3. Characterising operator-valued Fourier-Stieltjes transforms..............44   3.4. Strong 1-multipliers.............................................................................47   3.5. Locally compact groups in general: Wendel's theorem.......................54   3.6. Costé's theorem..................................................................................57 4. Convolution with respect to spectral measures........................................60   4.1. General theory....................................................................................60   4.2. Translation: the canonical spectral measure on L²(G)........................65   4.3. Applications........................................................................................72 References..................................................................................................74 Index............................................................................................................76 2000 Mathematics Subject Classification: Primary 46G10, 42B15; Secondary 43A15, 43A05.

How to cite

top

Gaudry G. I., Ricker W. J., and Jefferies B. R. F.. Vector-valued multipliers: convolution with operator-valued measures. 2000. <http://eudml.org/doc/275830>.

@book{GaudryG2000,
abstract = { CONTENTS Preface.........................................................................................................5 1. Introduction...............................................................................................6   1.1. Measurability and vector measures.....................................................6   1.2. Convolution and vector measures.....................................................12   1.3. Operator-valued measures................................................................14 2. Harmonic analysis....................................................................................17   2.1. Commutative harmonic analysis for vector-valued functions...............17 3. Convolution with respect to operator-valued measures...........................24   3.1. General theory....................................................................................24   3.2. Vector-valued p-multipliers..................................................................28   3.3. Characterising operator-valued Fourier-Stieltjes transforms..............44   3.4. Strong 1-multipliers.............................................................................47   3.5. Locally compact groups in general: Wendel's theorem.......................54   3.6. Costé's theorem..................................................................................57 4. Convolution with respect to spectral measures........................................60   4.1. General theory....................................................................................60   4.2. Translation: the canonical spectral measure on L²(G)........................65   4.3. Applications........................................................................................72 References..................................................................................................74 Index............................................................................................................76 2000 Mathematics Subject Classification: Primary 46G10, 42B15; Secondary 43A15, 43A05.},
author = {Gaudry G. I., Ricker W. J., Jefferies B. R. F.},
keywords = {multipliers; Fourier-Stieltjes transforms; spectral measures; Calderon-Zygmund theory; vector-valued singular integral operators; vector-valued convolution operators; Coste's theorem; Brenner's theorem},
language = {eng},
title = {Vector-valued multipliers: convolution with operator-valued measures},
url = {http://eudml.org/doc/275830},
year = {2000},
}

TY - BOOK
AU - Gaudry G. I.
AU - Ricker W. J.
AU - Jefferies B. R. F.
TI - Vector-valued multipliers: convolution with operator-valued measures
PY - 2000
AB - CONTENTS Preface.........................................................................................................5 1. Introduction...............................................................................................6   1.1. Measurability and vector measures.....................................................6   1.2. Convolution and vector measures.....................................................12   1.3. Operator-valued measures................................................................14 2. Harmonic analysis....................................................................................17   2.1. Commutative harmonic analysis for vector-valued functions...............17 3. Convolution with respect to operator-valued measures...........................24   3.1. General theory....................................................................................24   3.2. Vector-valued p-multipliers..................................................................28   3.3. Characterising operator-valued Fourier-Stieltjes transforms..............44   3.4. Strong 1-multipliers.............................................................................47   3.5. Locally compact groups in general: Wendel's theorem.......................54   3.6. Costé's theorem..................................................................................57 4. Convolution with respect to spectral measures........................................60   4.1. General theory....................................................................................60   4.2. Translation: the canonical spectral measure on L²(G)........................65   4.3. Applications........................................................................................72 References..................................................................................................74 Index............................................................................................................76 2000 Mathematics Subject Classification: Primary 46G10, 42B15; Secondary 43A15, 43A05.
LA - eng
KW - multipliers; Fourier-Stieltjes transforms; spectral measures; Calderon-Zygmund theory; vector-valued singular integral operators; vector-valued convolution operators; Coste's theorem; Brenner's theorem
UR - http://eudml.org/doc/275830
ER -

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.