Torsional rigidity on compact Riemannian manifolds with lower Ricci curvature bounds

Najoua Gamara; Abdelhalim Hasnaoui; Akrem Makni

Open Mathematics (2015)

  • Volume: 13, Issue: 1
  • ISSN: 2391-5455

Abstract

top
In this article we prove a reverse Hölder inequality for the fundamental eigenfunction of the Dirichlet problem on domains of a compact Riemannian manifold with lower Ricci curvature bounds. We also prove an isoperimetric inequality for the torsional ridigity of such domains

How to cite

top

Najoua Gamara, Abdelhalim Hasnaoui, and Akrem Makni. "Torsional rigidity on compact Riemannian manifolds with lower Ricci curvature bounds." Open Mathematics 13.1 (2015): null. <http://eudml.org/doc/275836>.

@article{NajouaGamara2015,
abstract = {In this article we prove a reverse Hölder inequality for the fundamental eigenfunction of the Dirichlet problem on domains of a compact Riemannian manifold with lower Ricci curvature bounds. We also prove an isoperimetric inequality for the torsional ridigity of such domains},
author = {Najoua Gamara, Abdelhalim Hasnaoui, Akrem Makni},
journal = {Open Mathematics},
keywords = {Isoperimetric inequalities; Eigenfunctions; Ricci curvature; Reverse Hölder Inequality; Torsional rigidity},
language = {eng},
number = {1},
pages = {null},
title = {Torsional rigidity on compact Riemannian manifolds with lower Ricci curvature bounds},
url = {http://eudml.org/doc/275836},
volume = {13},
year = {2015},
}

TY - JOUR
AU - Najoua Gamara
AU - Abdelhalim Hasnaoui
AU - Akrem Makni
TI - Torsional rigidity on compact Riemannian manifolds with lower Ricci curvature bounds
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - null
AB - In this article we prove a reverse Hölder inequality for the fundamental eigenfunction of the Dirichlet problem on domains of a compact Riemannian manifold with lower Ricci curvature bounds. We also prove an isoperimetric inequality for the torsional ridigity of such domains
LA - eng
KW - Isoperimetric inequalities; Eigenfunctions; Ricci curvature; Reverse Hölder Inequality; Torsional rigidity
UR - http://eudml.org/doc/275836
ER -

References

top
  1. [1] Krahn E., Über eine von Rayleigh formulierte Minmaleigenschaft des Kreises, Math. Ann., 1925, 94, 97-100. Zbl51.0356.05
  2. [2] Faber C., Beweiss, dass unter allen homogenen Membrane von gleicher Fläche und gleicher Spannung die kreisf ˝ ormige die tiefsten Grundton gibt. Sitzungsber.-Bayer. Akad. Wiss., Math.Phys.Munich., 1923, 169-172. 
  3. [3] Payne L.E., Rayner M.E., Some isoperimetric norm bounds for solutions of the Helmholtz equation, Z. Angew. Math. Phys., 1973, 24, 105-110.[Crossref] Zbl0256.35023
  4. [4] Payne L.E., Rayner M.E., An isoperimetric inequality for the first eigenfunction in the fixed membrane problem, Z. Angew. Math. Phys.,1972, 23, 13-15.[Crossref] Zbl0241.73080
  5. [5] Kohler Jobin M.T., Sur la première fonction propre d’une membrane: une extension à N dimensions de l’inégalité isopérimétrique de Payne-Rayner, Z. Angew. Math. Phys., 1977, 28, 1137-1140.[Crossref] Zbl0379.73071
  6. [6] Chiti G., A reverse Hölder inequality for the eigenfunctions of linear second order elliptic operators, Z. Angew. Math. Phys., 1982, 33, 143-148. Zbl0508.35063
  7. [7] Hasnaoui A., On the Problem of Queen Dido for a Wedge like membrane and a Compact Riemannian manifold with lower Ricci curvature bound, PhD thesis, University Tunis El Manar, Tunis, Tunisia. 2014. 
  8. [8] Cheng S.Y., Eigenvalue comparison theorems and its geometric aplications, Math. Z., 1975, 143, 289-297. Zbl0329.53035
  9. [9] Bérard P., Meyer D., Inégalités isopérimétriques et applications, Ann. Scient. Ec. Norm. Sup. 1982, 4, 15, 513-542. Zbl0527.35020
  10. [10] Gamara Abdelmoula N., Symétrisation d’inéquations elliptiques et applications géométriques, Math. Z. 1988, 199, 181-190. Zbl0698.53028
  11. [11] Ling J., Lu Z., Bounds of eigenvalues on Riemannian manifolds., Adv. Lect. Math. (ALM), 2010, 10, 241-264. Zbl1200.58020
  12. [12] De Saint-Venant B., Mémoire sur la torsion des prismes. Mémoir. pres. divers. savants, Acad. Sci., 1856, 14, 233-560. 
  13. [13] Pólya G., Torsional rigidity, principal frequency, electrostatic capacity, and symmetrization, Quart. of Appl. Maths., 1948, 6, 267-277. Zbl0037.25301
  14. [14] Makai E., A proof of Saint-Venant’s theorem on torsional rigidity, Acta Math. Acad. Sci. Hungar., 1966, 17, 419-422.[Crossref] Zbl0151.36305
  15. [15] Bandle C., Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. Zbl0436.35063
  16. [16] Pólya G., Szeg˝o G., Isoperimetric Inequalities in Mathematical Physics. Princeton University Press, 1951. 
  17. [17] Carroll T., Ratzkin J.: Interpolating between torsional rigidity and principal frequency, J. Math. Anal. Appl., 2011, 379, 818-826.[WoS] Zbl1216.35016
  18. [18] Iversen M., Torsional rigidity of a radially perturbed ball, Oberwolfach Report, 2012, 33, 31-33. 
  19. [19] Van den Berg M., Estimates for the torsion function and Sobolev constants, Potential. Anal., 2012, 36, 607-616.[WoS] Zbl1246.60108
  20. [20] Carroll T., Ratzkin J., A reverse Hölder inequality for extremal Sobolev functions, Potential. Anal, DOI 10.1007/s11118-014-9433-6.[Crossref] Zbl1308.35008
  21. [21] Payne L.E., Some comments on the past fifty years of isoperimetric inequalities, Inequalities (Birmingham, 1987), Lecture Notes in Pure and Appl. Math., 1991, 129, 143-161. 
  22. [22] Payne L.E., Some isoperimetric inequalities in the torsion problem for multiply connected regions, Studies in mathematical analysis and related topics: Essays in honor of Georgia Pólya, Stanford Univ. Press, Stanford, Calif., 1962, 270-280. 
  23. [23] Payne L.E., Weinberger, H.F., Some isoperimetric inequalities for membrane frequencies and torsional rigidity, J. Math. Anal. Appl., 1961, 2, 210-216.[Crossref] Zbl0098.39201
  24. [24] Ashbaugh M.S., Benguria R. D., A sharp bound for the ratio of the first two Dirichlet eigenvalues of a domain in a hemisphere of Sn., Trans. Amer. Math. Soc., 2001, 353, 1055-1087. Zbl0981.53023
  25. [25] Chavel I., Feldman E. A., Isoperimetric inequalities on curved surfaces., Adv. in Math., 1980, 37, 83-98. Zbl0461.53012
  26. [26] Gromov M., Paul Levy’s isoperimetric inequality. Appendix C in Metric structures for Riemannian and non-Riemannian spaces., Progress in Mathematics, 152., Birkh˝auser Boston, Inc., Boston, MA, 1999. 
  27. [27] Benguria, R. D.: Isoperimetric inequalities for eigenvalues of the Laplacian. Entropy and the quantum II, 21-60, Contemp. Math., 552, Amer. Math. Soc., Providence, RI (2011).[Crossref] 
  28. [28] Chiti G., An isoperimetric inequality for the eigenfunctions of linear second order elliptic operators, Boll. Un. Mat. Ital. A., 1982, 6, 1, 145-151. Zbl0484.35067
  29. [29] Hardy G.H., Littlewood, J.E., Pólya G., Some simple inequalities satisfied by convex functions, Messenger Math., 1929, 58, 145-152. Reprinted in Collected Papers of G. H. Hardy, Vol.II, London Math. Soc., Clarendon Press: Oxford, 500-508, 1967. 
  30. [30] Talenti G., Elliptic equations and rearrangements, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 1976, 3, 697-718. Zbl0341.35031

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.