Viability theorems for stochastic inclusions
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (1995)
- Volume: 15, Issue: 1, page 61-42
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topMichał Kisielewicz. "Viability theorems for stochastic inclusions." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 15.1 (1995): 61-42. <http://eudml.org/doc/275850>.
@article{MichałKisielewicz1995,
abstract = {Sufficient conditions for the existence of solutions to stochastic inclusions $x_t - x_s ∈ ∫^t_s F_τ(x_τ)dτ + ∫^t_s G_τ(x_τ)dw_τ + ∫^t_s∫_\{IRⁿ\} H_\{τ,z\}(x_τ)ν̃ (dτ,dz)$ beloning to a given set K of n-dimensional cádlág processes are given.},
author = {Michał Kisielewicz},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {stochastic processes; stochastic inclusions; optimal control},
language = {eng},
number = {1},
pages = {61-42},
title = {Viability theorems for stochastic inclusions},
url = {http://eudml.org/doc/275850},
volume = {15},
year = {1995},
}
TY - JOUR
AU - Michał Kisielewicz
TI - Viability theorems for stochastic inclusions
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 1995
VL - 15
IS - 1
SP - 61
EP - 42
AB - Sufficient conditions for the existence of solutions to stochastic inclusions $x_t - x_s ∈ ∫^t_s F_τ(x_τ)dτ + ∫^t_s G_τ(x_τ)dw_τ + ∫^t_s∫_{IRⁿ} H_{τ,z}(x_τ)ν̃ (dτ,dz)$ beloning to a given set K of n-dimensional cádlág processes are given.
LA - eng
KW - stochastic processes; stochastic inclusions; optimal control
UR - http://eudml.org/doc/275850
ER -
References
top- [1] J. P. Aubin, and A. Cellina, Differential Inclusions, Springer-Verlag 1984. Zbl0538.34007
- [2] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäser 1990.
- [3] F. Hiai, and H. Umegaki, Integrals, conditional expections and martingals of multifunctions, J. Multivariate Anal. 7 (1977), 149-182. Zbl0368.60006
- [4] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Journal of Stochastic Analysis and Applications (submitted to print).
- [5] M. Kisielewicz, Properties of solution set of stochastic inclusions, Journal of Appl. Math. and Stochastic Analysis 6 (3) (1993), 217-236. Zbl0796.93106
- [6] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ. and Polish Sci. Publ. Warszawa - Dordrecht - Boston - London (1991). Zbl0731.49001
- [7] N. S. Papageorgiou, Decomposable sets in the Lebesgue-Bochner spaces, Comm. Math. Univ. Sancti Pauli 37 (1) (1988), 49-62. Zbl0679.46032
- [8] Ph. Protter, Stochastic Integration and Differential Equations, Springer-Verlag (1990), Berlin - Heildelberg - New York.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.