Viability theorems for stochastic inclusions

Michał Kisielewicz

Discussiones Mathematicae, Differential Inclusions, Control and Optimization (1995)

  • Volume: 15, Issue: 1, page 61-42
  • ISSN: 1509-9407

Abstract

top
Sufficient conditions for the existence of solutions to stochastic inclusions x t - x s s t F τ ( x τ ) d τ + s t G τ ( x τ ) d w τ + s t I R H τ , z ( x τ ) ν ̃ ( d τ , d z ) beloning to a given set K of n-dimensional cádlág processes are given.

How to cite

top

Michał Kisielewicz. "Viability theorems for stochastic inclusions." Discussiones Mathematicae, Differential Inclusions, Control and Optimization 15.1 (1995): 61-42. <http://eudml.org/doc/275850>.

@article{MichałKisielewicz1995,
abstract = {Sufficient conditions for the existence of solutions to stochastic inclusions $x_t - x_s ∈ ∫^t_s F_τ(x_τ)dτ + ∫^t_s G_τ(x_τ)dw_τ + ∫^t_s∫_\{IRⁿ\} H_\{τ,z\}(x_τ)ν̃ (dτ,dz)$ beloning to a given set K of n-dimensional cádlág processes are given.},
author = {Michał Kisielewicz},
journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
keywords = {stochastic processes; stochastic inclusions; optimal control},
language = {eng},
number = {1},
pages = {61-42},
title = {Viability theorems for stochastic inclusions},
url = {http://eudml.org/doc/275850},
volume = {15},
year = {1995},
}

TY - JOUR
AU - Michał Kisielewicz
TI - Viability theorems for stochastic inclusions
JO - Discussiones Mathematicae, Differential Inclusions, Control and Optimization
PY - 1995
VL - 15
IS - 1
SP - 61
EP - 42
AB - Sufficient conditions for the existence of solutions to stochastic inclusions $x_t - x_s ∈ ∫^t_s F_τ(x_τ)dτ + ∫^t_s G_τ(x_τ)dw_τ + ∫^t_s∫_{IRⁿ} H_{τ,z}(x_τ)ν̃ (dτ,dz)$ beloning to a given set K of n-dimensional cádlág processes are given.
LA - eng
KW - stochastic processes; stochastic inclusions; optimal control
UR - http://eudml.org/doc/275850
ER -

References

top
  1. [1] J. P. Aubin, and A. Cellina, Differential Inclusions, Springer-Verlag 1984. Zbl0538.34007
  2. [2] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäser 1990. 
  3. [3] F. Hiai, and H. Umegaki, Integrals, conditional expections and martingals of multifunctions, J. Multivariate Anal. 7 (1977), 149-182. Zbl0368.60006
  4. [4] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Journal of Stochastic Analysis and Applications (submitted to print). 
  5. [5] M. Kisielewicz, Properties of solution set of stochastic inclusions, Journal of Appl. Math. and Stochastic Analysis 6 (3) (1993), 217-236. Zbl0796.93106
  6. [6] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ. and Polish Sci. Publ. Warszawa - Dordrecht - Boston - London (1991). Zbl0731.49001
  7. [7] N. S. Papageorgiou, Decomposable sets in the Lebesgue-Bochner spaces, Comm. Math. Univ. Sancti Pauli 37 (1) (1988), 49-62. Zbl0679.46032
  8. [8] Ph. Protter, Stochastic Integration and Differential Equations, Springer-Verlag (1990), Berlin - Heildelberg - New York. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.