On risk reserve under distribution constraints

Mariusz Michta

Discussiones Mathematicae Probability and Statistics (2000)

  • Volume: 20, Issue: 2, page 249-260
  • ISSN: 1509-9423

Abstract

top
The purpose of this work is a study of the following insurance reserve model: R ( t ) = η + 0 t p ( s , R ( s ) ) d s + 0 t σ ( s , R ( s ) ) d W s - Z ( t ) , t ∈ [0,T], P(η ≥ c) ≥ 1-ϵ, ϵ ≥ 0. Under viability-type assumptions on a pair (p,σ) the estimation γ with the property: i n f 0 t T P R ( t ) c γ is considered.

How to cite

top

Mariusz Michta. "On risk reserve under distribution constraints." Discussiones Mathematicae Probability and Statistics 20.2 (2000): 249-260. <http://eudml.org/doc/287660>.

@article{MariuszMichta2000,
abstract = {The purpose of this work is a study of the following insurance reserve model: $R(t) = η + ∫_\{0\}^\{t\} p(s,R(s))ds + ∫_\{0\}^\{t\} σ(s,R(s))dW_\{s\} - Z(t)$, t ∈ [0,T], P(η ≥ c) ≥ 1-ϵ, ϵ ≥ 0. Under viability-type assumptions on a pair (p,σ) the estimation γ with the property: $inf_\{0≤t≤T\} P\{R(t) ≥ c\} ≥ γ$ is considered.},
author = {Mariusz Michta},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {martingales; stochastic equations; reserve process; Girsanov`s theorem; viability; Girsanov's theorem},
language = {eng},
number = {2},
pages = {249-260},
title = {On risk reserve under distribution constraints},
url = {http://eudml.org/doc/287660},
volume = {20},
year = {2000},
}

TY - JOUR
AU - Mariusz Michta
TI - On risk reserve under distribution constraints
JO - Discussiones Mathematicae Probability and Statistics
PY - 2000
VL - 20
IS - 2
SP - 249
EP - 260
AB - The purpose of this work is a study of the following insurance reserve model: $R(t) = η + ∫_{0}^{t} p(s,R(s))ds + ∫_{0}^{t} σ(s,R(s))dW_{s} - Z(t)$, t ∈ [0,T], P(η ≥ c) ≥ 1-ϵ, ϵ ≥ 0. Under viability-type assumptions on a pair (p,σ) the estimation γ with the property: $inf_{0≤t≤T} P{R(t) ≥ c} ≥ γ$ is considered.
LA - eng
KW - martingales; stochastic equations; reserve process; Girsanov`s theorem; viability; Girsanov's theorem
UR - http://eudml.org/doc/287660
ER -

References

top
  1. [1] J.P. Aubin and G. Da Prato, Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 595-613. Zbl0741.60046
  2. [2] J.P. Aubin and G. Da Prato, The viability theorem for stochastic differential inclusions, Stochastic Anal. Appl. 16 (1) (1998), 1-15. Zbl0931.60059
  3. [3] R. Bergmann and D. Stoyan, On exponential bounds for the waiting time distribution function in GI/G/1, Journal of Applied Probability 13 (1976), 411-417. Zbl0344.60057
  4. [4] P. Billingsley, Convergence of Probability Measures, J. Wiley and Sons, New York and London 1968. Zbl0172.21201
  5. [5] F. Dufresne and H.U. Gerber, Risk theory for the compound Poisson process that is perturbated by diffiusion, Insurance: Mathematics and Economics 10 (1991), 51-59. Zbl0723.62065
  6. [6] S. Gauthier and L. Thibault, Viability for constrained stochastic differential equations, Differential and Integral Equations 6 (6) 1395-1414. Zbl0780.93085
  7. [7] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, Berlin-New York 1988. Zbl0638.60065
  8. [8] M. Kisielewicz, Viability theorems for stochastic inclusions, Discuss. Math. Diff. Incl. 15 (1) (1995), 61-75. Zbl0844.93072
  9. [9] T. Kurtz and Ph. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab. 19 (3) (1991), 1035-1070. Zbl0742.60053
  10. [10] F. Lundberg, I, Approximerad Framställning av Sannonlikhetsfunktionen, II, A°terförsäkering av Kollektivresker, Almqvist and Wiksell, Upsala 1903. 
  11. [11] L. Mazliak, A note on weak viability for controlled diffusion, Prepublications du Lab. de Probab. Universite de Paris 6, 7, 513 (1999). 
  12. [12] M. Michta, A note on viability under distribution constrains, Discuss. Math. Algebra and Stochastic Methods 18 (2) (1998), 215-225. Zbl0938.60050
  13. [13] S.S. Petersen, Calculation of ruin probabilities when the premium depends on the current reserve, Scand. Act. J. (1990), 147-159. Zbl0711.62097
  14. [14] Ph. Protter, A connection between the expansion of filtrations and Girsanov`s theorem, Stochastic partial differential equations, Lecture Notes in Math. 1930 Springer, Berlin-New York, (1989), 221-224. 
  15. [15] Ph. Protter, Stochastic Integration and Differential Equations, Springer, Berlin-New York 1990. 
  16. [16] M. Yor, Grossissement de filtrations et absolue continuite de noyaux, Springer, Berlin-New York, Lecture Notes in Math. 1118 (1985), 6-15. Zbl0576.60038

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.