On risk reserve under distribution constraints
Discussiones Mathematicae Probability and Statistics (2000)
- Volume: 20, Issue: 2, page 249-260
- ISSN: 1509-9423
Access Full Article
topAbstract
topHow to cite
topMariusz Michta. "On risk reserve under distribution constraints." Discussiones Mathematicae Probability and Statistics 20.2 (2000): 249-260. <http://eudml.org/doc/287660>.
@article{MariuszMichta2000,
abstract = {The purpose of this work is a study of the following insurance reserve model: $R(t) = η + ∫_\{0\}^\{t\} p(s,R(s))ds + ∫_\{0\}^\{t\} σ(s,R(s))dW_\{s\} - Z(t)$, t ∈ [0,T], P(η ≥ c) ≥ 1-ϵ, ϵ ≥ 0. Under viability-type assumptions on a pair (p,σ) the estimation γ with the property: $inf_\{0≤t≤T\} P\{R(t) ≥ c\} ≥ γ$ is considered.},
author = {Mariusz Michta},
journal = {Discussiones Mathematicae Probability and Statistics},
keywords = {martingales; stochastic equations; reserve process; Girsanov`s theorem; viability; Girsanov's theorem},
language = {eng},
number = {2},
pages = {249-260},
title = {On risk reserve under distribution constraints},
url = {http://eudml.org/doc/287660},
volume = {20},
year = {2000},
}
TY - JOUR
AU - Mariusz Michta
TI - On risk reserve under distribution constraints
JO - Discussiones Mathematicae Probability and Statistics
PY - 2000
VL - 20
IS - 2
SP - 249
EP - 260
AB - The purpose of this work is a study of the following insurance reserve model: $R(t) = η + ∫_{0}^{t} p(s,R(s))ds + ∫_{0}^{t} σ(s,R(s))dW_{s} - Z(t)$, t ∈ [0,T], P(η ≥ c) ≥ 1-ϵ, ϵ ≥ 0. Under viability-type assumptions on a pair (p,σ) the estimation γ with the property: $inf_{0≤t≤T} P{R(t) ≥ c} ≥ γ$ is considered.
LA - eng
KW - martingales; stochastic equations; reserve process; Girsanov`s theorem; viability; Girsanov's theorem
UR - http://eudml.org/doc/287660
ER -
References
top- [1] J.P. Aubin and G. Da Prato, Stochastic viability and invariance, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17 (1990), 595-613. Zbl0741.60046
- [2] J.P. Aubin and G. Da Prato, The viability theorem for stochastic differential inclusions, Stochastic Anal. Appl. 16 (1) (1998), 1-15. Zbl0931.60059
- [3] R. Bergmann and D. Stoyan, On exponential bounds for the waiting time distribution function in GI/G/1, Journal of Applied Probability 13 (1976), 411-417. Zbl0344.60057
- [4] P. Billingsley, Convergence of Probability Measures, J. Wiley and Sons, New York and London 1968. Zbl0172.21201
- [5] F. Dufresne and H.U. Gerber, Risk theory for the compound Poisson process that is perturbated by diffiusion, Insurance: Mathematics and Economics 10 (1991), 51-59. Zbl0723.62065
- [6] S. Gauthier and L. Thibault, Viability for constrained stochastic differential equations, Differential and Integral Equations 6 (6) 1395-1414. Zbl0780.93085
- [7] I. Karatzas and S.E. Shreve, Brownian Motion and Stochastic Calculus, Springer, Berlin-New York 1988. Zbl0638.60065
- [8] M. Kisielewicz, Viability theorems for stochastic inclusions, Discuss. Math. Diff. Incl. 15 (1) (1995), 61-75. Zbl0844.93072
- [9] T. Kurtz and Ph. Protter, Weak limit theorems for stochastic integrals and stochastic differential equations, Ann. Probab. 19 (3) (1991), 1035-1070. Zbl0742.60053
- [10] F. Lundberg, I, Approximerad Framställning av Sannonlikhetsfunktionen, II, A°terförsäkering av Kollektivresker, Almqvist and Wiksell, Upsala 1903.
- [11] L. Mazliak, A note on weak viability for controlled diffusion, Prepublications du Lab. de Probab. Universite de Paris 6, 7, 513 (1999).
- [12] M. Michta, A note on viability under distribution constrains, Discuss. Math. Algebra and Stochastic Methods 18 (2) (1998), 215-225. Zbl0938.60050
- [13] S.S. Petersen, Calculation of ruin probabilities when the premium depends on the current reserve, Scand. Act. J. (1990), 147-159. Zbl0711.62097
- [14] Ph. Protter, A connection between the expansion of filtrations and Girsanov`s theorem, Stochastic partial differential equations, Lecture Notes in Math. 1930 Springer, Berlin-New York, (1989), 221-224.
- [15] Ph. Protter, Stochastic Integration and Differential Equations, Springer, Berlin-New York 1990.
- [16] M. Yor, Grossissement de filtrations et absolue continuite de noyaux, Springer, Berlin-New York, Lecture Notes in Math. 1118 (1985), 6-15. Zbl0576.60038
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.