Critical Graphs for R(P n , P m ) and the Star-Critical Ramsey Number for Paths

Jonelle Hook

Discussiones Mathematicae Graph Theory (2015)

  • Volume: 35, Issue: 4, page 689-701
  • ISSN: 2083-5892

Abstract

top
The graph Ramsey number R(G,H) is the smallest integer r such that every 2-coloring of the edges of Kr contains either a red copy of G or a blue copy of H. The star-critical Ramsey number r∗(G,H) is the smallest integer k such that every 2-coloring of the edges of Kr − K1,r−1−k contains either a red copy of G or a blue copy of H. We will classify the critical graphs, 2-colorings of the complete graph on R(G,H) − 1 vertices with no red G or blue H, for the path-path Ramsey number. This classification will be used in the proof of r∗(Pn, Pm).

How to cite

top

Jonelle Hook. " Critical Graphs for R(P n , P m ) and the Star-Critical Ramsey Number for Paths ." Discussiones Mathematicae Graph Theory 35.4 (2015): 689-701. <http://eudml.org/doc/275867>.

@article{JonelleHook2015,
abstract = {The graph Ramsey number R(G,H) is the smallest integer r such that every 2-coloring of the edges of Kr contains either a red copy of G or a blue copy of H. The star-critical Ramsey number r∗(G,H) is the smallest integer k such that every 2-coloring of the edges of Kr − K1,r−1−k contains either a red copy of G or a blue copy of H. We will classify the critical graphs, 2-colorings of the complete graph on R(G,H) − 1 vertices with no red G or blue H, for the path-path Ramsey number. This classification will be used in the proof of r∗(Pn, Pm).},
author = {Jonelle Hook},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {Ramsey number; critical graph; star-critical Ramsey number; path},
language = {eng},
number = {4},
pages = {689-701},
title = { Critical Graphs for R(P n , P m ) and the Star-Critical Ramsey Number for Paths },
url = {http://eudml.org/doc/275867},
volume = {35},
year = {2015},
}

TY - JOUR
AU - Jonelle Hook
TI - Critical Graphs for R(P n , P m ) and the Star-Critical Ramsey Number for Paths
JO - Discussiones Mathematicae Graph Theory
PY - 2015
VL - 35
IS - 4
SP - 689
EP - 701
AB - The graph Ramsey number R(G,H) is the smallest integer r such that every 2-coloring of the edges of Kr contains either a red copy of G or a blue copy of H. The star-critical Ramsey number r∗(G,H) is the smallest integer k such that every 2-coloring of the edges of Kr − K1,r−1−k contains either a red copy of G or a blue copy of H. We will classify the critical graphs, 2-colorings of the complete graph on R(G,H) − 1 vertices with no red G or blue H, for the path-path Ramsey number. This classification will be used in the proof of r∗(Pn, Pm).
LA - eng
KW - Ramsey number; critical graph; star-critical Ramsey number; path
UR - http://eudml.org/doc/275867
ER -

References

top
  1. [1] L. Gerencsér and A. Gyárfás, On Ramsey-type problems, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 10 (1967) 167-170. Zbl0163.45502
  2. [2] J. Hook, The classification of critical graphs and star-critical Ramsey numbers (Ph.D. Thesis, Lehigh University, 2010). 
  3. [3] J. Hook and G. Isaak, Star-critical Ramsey numbers, Discrete Appl. Math. 159 (2011) 328-334. doi:10.1016/j.dam.2010.11.007[Crossref] Zbl1207.05212
  4. [4] R.J. Faudree, S.L. Lawrence, T.D. Parsons and R.H. Schelp, Path-cycle Ramsey numbers, Discrete Math. 10 (1974) 269-277. doi:10.1016/0012-365X(74)90122-8 Zbl0293.05120
  5. [5] R.J. Faudree and R.H. Schelp, All Ramsey numbers for cycles in graphs, Discrete Math. 8 (1974) 313-329. doi:10.1016/0012-365X(74)90151-4 Zbl0294.05122
  6. [6] D.B. West, Introduction to Graph Theory (Second Ed., Prentice Hall, Upper Saddle River, New Jersey, 2000). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.