The even Clifford structure of the fourth Severi variety
Maurizio Parton; Paolo Piccinni
Complex Manifolds (2015)
- Volume: 2, Issue: 1, page 89-104, electronic only
- ISSN: 2300-7443
Access Full Article
topAbstract
topHow to cite
topMaurizio Parton, and Paolo Piccinni. "The even Clifford structure of the fourth Severi variety." Complex Manifolds 2.1 (2015): 89-104, electronic only. <http://eudml.org/doc/275869>.
@article{MaurizioParton2015,
abstract = {TheHermitian symmetric spaceM = EIII appears in the classification of complete simply connected Riemannian manifolds carrying a parallel even Clifford structure [19]. This means the existence of a real oriented Euclidean vector bundle E over it together with an algebra bundle morphism φ : Cl0(E) → End(TM) mapping Ʌ2E into skew-symmetric endomorphisms, and the existence of a metric connection on E compatible with φ. We give an explicit description of such a vector bundle E as a sub-bundle of End(TM). From this we construct a canonical differential 8-form on EIII, associated with its holonomy Spin(10) · U(1) ⊂ U(16), that represents a generator of its cohomology ring. We relate it with a Schubert cycle structure by looking at EIII as the smooth projective variety V(4) ⊂ CP26 known as the fourth Severi variety.},
author = {Maurizio Parton, Paolo Piccinni},
journal = {Complex Manifolds},
keywords = {Clifford structure; exceptional symmetric space; octonions; canonical differential form},
language = {eng},
number = {1},
pages = {89-104, electronic only},
title = {The even Clifford structure of the fourth Severi variety},
url = {http://eudml.org/doc/275869},
volume = {2},
year = {2015},
}
TY - JOUR
AU - Maurizio Parton
AU - Paolo Piccinni
TI - The even Clifford structure of the fourth Severi variety
JO - Complex Manifolds
PY - 2015
VL - 2
IS - 1
SP - 89
EP - 104, electronic only
AB - TheHermitian symmetric spaceM = EIII appears in the classification of complete simply connected Riemannian manifolds carrying a parallel even Clifford structure [19]. This means the existence of a real oriented Euclidean vector bundle E over it together with an algebra bundle morphism φ : Cl0(E) → End(TM) mapping Ʌ2E into skew-symmetric endomorphisms, and the existence of a metric connection on E compatible with φ. We give an explicit description of such a vector bundle E as a sub-bundle of End(TM). From this we construct a canonical differential 8-form on EIII, associated with its holonomy Spin(10) · U(1) ⊂ U(16), that represents a generator of its cohomology ring. We relate it with a Schubert cycle structure by looking at EIII as the smooth projective variety V(4) ⊂ CP26 known as the fourth Severi variety.
LA - eng
KW - Clifford structure; exceptional symmetric space; octonions; canonical differential form
UR - http://eudml.org/doc/275869
ER -
References
top- [1] M. Atiyah and J. Berndt. Projective planes, Severi varieties and spheres. In Surveys in Differential Geometry, volume VIII, pages 1–27. Int. Press, Somerville, MA, 2003. Zbl1057.53040
- [2] J. C. Baez. The octonions. Bull. Amer. Math. Soc. (N.S.), 39(2):145–205, 2002. Zbl1026.17001
- [3] M. Berger. Du cˆot´e de chez Pu. Ann. Sci. ´ Ecole Norm. Sup. (4), 5:1–44, 1972.
- [4] A. Borel. Sur la cohomologie des espaces fibr´es principaux et des espaces homog`enes de groupes de Lie compacts. Ann. of Math. (2), 57:115–207, 1953. Zbl0052.40001
- [5] R. L. Bryant. Remarks on Spinors in Low Dimension, April 1999. Available at http://www.math.duke.edu/~bryant/Spinors. pdf.
- [6] H. Duan and X. Zhao. The Chow rings of generalized Grassmannians. Found. Comput. Math., 10(3):245–274, 2010. Zbl1193.14008
- [7] J.-H. Eschenburg. Riemannian Geometry and Linear Algebra, 2012. Available at http://www.math.uni-augsburg.de/ ~eschenbu/riemlin.pdf.
- [8] J.-H. Eschenburg. Symmetric Spaces and Division Algebras, 2012. Available at http://www.math.uni-augsburg.de/ ~eschenbu/symdiv.pdf.
- [9] D. Ferus, H. Karcher, and H. F. M¨unzner. Cliffordalgebren und neue isoparametrische Hyperfl¨achen. Math. Z., 177(4):479– 502, 1981. Zbl0443.53037
- [10] T. Friedrich. Weak Spin(9)-structures on 16-dimensional Riemannian manifolds. Asian J. Math., 5(1):129–160, 2001. Zbl1021.53028
- [11] C. Gorodski and M. Radeschi. On homogeneous composed Clifford foliations, 2015. arXiv:1503.09058 [math.DG].
- [12] F. R. Harvey. Spinors and Calibrations, volume 9 of Perspectives in Mathematics. Academic Press Inc., Boston, MA, 1990. Zbl0694.53002
- [13] A. Iliev and L. Manivel. The Chow ring of the Cayley plane. Compos. Math., 141(1):146–160, 2005. Zbl1071.14056
- [14] S. Ishihara. Quaternion K¨ahlerian manifolds. J. Differential Geometry, 9:483–500, 1974. Zbl0297.53014
- [15] J. M. Landsberg and L. Manivel. The projective geometry of Freudenthal’s magic square. J. Algebra, 239(2):477–512, 2001. Zbl1064.14053
- [16] R. Lazarsfeld and A. Van de Ven. Topics in the geometry of projective space, volume 4 of DMV Seminar. Birkh¨auser Verlag, Basel, 1984.
- [17] E. Meinrenken. Clifford algebras and Lie theory, volume 58 of Erg. der Math. und Grenz. Springer, Heidelberg, 2013. Zbl1267.15021
- [18] A. Moroianu and M. Pilca. Higher rank homogeneous Clifford structures. J. Lond. Math. Soc. (2), 87(2):384–400, 2013. Zbl1269.53055
- [19] A. Moroianu and U. Semmelmann. Clifford structures on Riemannian manifolds. Adv. Math., 228(2):940–967, 2011. Zbl1231.53042
- [20] L. Ornea, M. Parton, P. Piccinni, and V. Vuletescu. Spin(9) geometry of the octonionic Hopf fibration. Transformation Groups, 18(3):845–864, 2013. Zbl1298.53040
- [21] M. Postnikov. Lie groups and Lie algebras, volume V of Lectures in geometry. “Mir”, Moscow, 1986.
- [22] M. Parton and P. Piccinni. Spin(9) and almost complex structures on 16-dimensional manifolds. Ann. Global Anal. Geom., 41(3):321–345, 2012. Zbl1258.53047
- [23] M. Parton and P. Piccinni. Spheres with more than 7 vector fields: All the fault of Spin(9). Linear Algebra Appl., 438(3):1113– 1131, 2013. Zbl1266.15044
- [24] M. Radeschi. Clifford algebras and new singular Riemannian foliations in spheres. Geom. Funct. Anal., 24(5):1660–1682, 2014. [WoS][Crossref]
- [25] F. Russo. Tangents and secants of algebraic varieties: notes of a course. Publica¸c˜oes Matem´aticas do IMPA. Instituto de Matem´atica Pura e Aplicada (IMPA), Rio de Janeiro, 2003. 24o Col´oquio Brasileiro de Matem´atica. Zbl1061.14058
- [26] B. Segre. Prodromi di geometria algebrica. Roma: Edizioni Cremonese, 1972. Zbl0281.14001
- [27] F. Severi. Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a’ suoi punti tripli apparenti. Palermo Rend., 15:33–51, 1901. Zbl32.0648.04
- [28] H. Toda and T. Watanabe. The integral cohomology ring of F4/T and E6/T. J. Math. Kyoto Univ., 14:257–286, 1974. [WoS] Zbl0289.57025
- [29] I. Yokota. Exceptional Lie groups, 2009. arXiv:0902.0431 [math.DG].
- [30] F. L. Zak. Severi varieties. Mat. Sb. (N.S.), 126(168)(1):115–132, 144, 1985. [WoS] Zbl0577.14031
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.