Two-dimensional long memory models
Kybernetika (1988)
- Volume: 24, Issue: 1, page 1-16
- ISSN: 0023-5954
Access Full Article
topHow to cite
topAnděl, Jiří, and Gómez, María. "Two-dimensional long memory models." Kybernetika 24.1 (1988): 1-16. <http://eudml.org/doc/27587>.
@article{Anděl1988,
author = {Anděl, Jiří, Gómez, María},
journal = {Kybernetika},
keywords = {autoregressive representations; moving average representations; two- dimensional model; back-shift operator; Exact formulae; spectral density; covariance function; long memory dependence},
language = {eng},
number = {1},
pages = {1-16},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Two-dimensional long memory models},
url = {http://eudml.org/doc/27587},
volume = {24},
year = {1988},
}
TY - JOUR
AU - Anděl, Jiří
AU - Gómez, María
TI - Two-dimensional long memory models
JO - Kybernetika
PY - 1988
PB - Institute of Information Theory and Automation AS CR
VL - 24
IS - 1
SP - 1
EP - 16
LA - eng
KW - autoregressive representations; moving average representations; two- dimensional model; back-shift operator; Exact formulae; spectral density; covariance function; long memory dependence
UR - http://eudml.org/doc/27587
ER -
References
top- J. Anděl, Long memory time series models, Kybernetika 22 (1986), 105-123. (1986) MR0849684
- W. Dunsmuir, E. J. Hannan, Vector linear time series models, J. Appl. Probab. 10 (1973), 130-145. (1973) MR0365960
- G. M. Fichtengolc, Kurs differencialnogo i integralnogo isčislenija III, Gos. izd. fiz.-mat. lit., Moskva 1960. (1960)
- J. Geweke, S. Porter-Hudak, The estimation and application of long memory time series models, J. Time Ser. Anal. 4 (1983), 221-238. (1983) Zbl0534.62062MR0738585
- C. W. Granger, R. Joyeux, An introduction to long memory time series models and fractional differencing, J. Time Ser. Anal. 1 (1980), 15-29. (1980) Zbl0503.62079MR0605572
- J. R. M. Hosking, Fractional differencing, Biometrika 68 (1981), 165-176. (1981) Zbl0464.62088MR0614953
- A. I. McLeod, K. W. Hipel, Preservation of the rescaled adjusted range. 1. A reassessment of the Hurst phenomenon, Water Resour. Res. 14 (1978), 491-508. (1978)
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.