Long memory time series models
Kybernetika (1986)
- Volume: 22, Issue: 2, page 105-123
- ISSN: 0023-5954
Access Full Article
topHow to cite
topReferences
top- J. Anděl, Statistische Analyse von Zeitreihen, Akademie-Verlag, Berlin 1984. (1984) MR0762087
- J. Geweke, S. Porter-Hudak, The estimation and application of long memory time series models, J. Time Series Anal. 4 (1983), 221-238. (1983) Zbl0534.62062MR0738585
- I. C. Gradštejn, I. M. Ryžik, Tablicy integralov, summ, rjadov i proizvedenij, Izd. 4-oje, Gos. izd. fiz.-mat. literatury, Moskva 1962. (1962)
- C. W. J. Granger, Long memory relationships and the aggregation of dynamic models, J. Econometrics 14 (1980), 227-238. (1980) Zbl0466.62108MR0597259
- C. W. Granger, R. Joyeux, An introduction to long memory time series models and fractional differencing, J. Time Series Anal. 1 (1980), 15 - 29. (1980) Zbl0503.62079MR0605572
- M. K. Grebenča, S. I. Novoselov, Učebnice matematické analysy II, Translated from Russian. NČSAV, Praha 1955. (1955)
- E. J. Hannan, The estimation of spectral density after trend removal, J. Roy. Statist. Soc. Ser. B 20 (1958), 323-333. (1958) MR0101605
- J. R. M. Hosking, Fractional differencing, Biometrika 68 (1981), 165-176. (1981) Zbl0464.62088MR0614953
- J. R. M. Hosking, Some models of persistence in time series, In: Time Series Analysis, Theory and Practice 1, ed. O. D. Anderson (Proc. Int. Conf. Valencia, 1981), 642-653. North Holland, Amsterdam 1982. (1981)
- V. Jarník, Integrální počet II, (Integral Calculus II.) NČSAV, Praha 1956. (1956)
- A. Jonas, Long Memory Self Similar Series Models, (unpublished manuscript). Harvard University 1981. (1981)
- B. B. Mandelbrot, A fast fractional Gaussian noise generator, Water Resour. Res. 7 (1971), 543-553. (1971)
- B. B. Mandelbrot, J. W. van Ness, Fractional Brownian motion, fractional noises and applications, SIAM Rev. 10 (1968), 422-437. (1968) MR0242239
- B. B. Mandelbrot, J. R. Wallis, Computer experiments with fractional Gaussian noises, Water Resour. Res. 5 (1969), 228-267. (1969)
- A. I. McLeod, K. W. Hipel, Preservation of the rescaled adjusted range. 1. A reassessment of the Hurst phenomenon, Water Resour. Res. 14 (1978), 491 - 508. (1978)
- P. E. O'Connell, A simple stochastic modelling of Hurst's law, In: Mathematical Models of Hydrology. Symposium, Warsaw, Vol. 1 (1971), 169-187 (IAHS Publ. No. 100, 1974). (1971)
- P. E. O'Connell, Stochastic Modelling of Long-Term Persistence in Streamflow Sequences, Ph. D. Thesis, Civil Engineering Dept., Imperial College, London 1974. (1974)
- W. Rudin, Analýza v reálném a komplexním oboru, (Translated from English original Real and Complex Analysis.) Academia, Praha 1977. (1977) Zbl0925.00003MR0497401
- Z. Vízková, Spektrální analýza časových řad, (Spectral analysis of time series.) Ekonomicko-matematický obzor 6 (1970), 285-309. (1970)