Invariant torsion and G2-metrics

Diego Conti; Thomas Bruun Madsen

Complex Manifolds (2015)

  • Volume: 2, Issue: 1, page 140-167, electronic only
  • ISSN: 2300-7443

Abstract

top
We introduce and study a notion of invariant intrinsic torsion geometrywhich appears, for instance, in connection with the Bryant-Salamon metric on the spinor bundle over S3. This space is foliated by sixdimensional hypersurfaces, each of which carries a particular type of SO(3)-structure; the intrinsic torsion is invariant under SO(3). The last condition is sufficient to imply local homogeneity of such geometries, and this allows us to give a classification. We close the circle by showing that the Bryant-Salamon metric is the unique complete metric with holonomy G2 that arises from SO(3)-structures with invariant intrinsic torsion.

How to cite

top

Diego Conti, and Thomas Bruun Madsen. "Invariant torsion and G2-metrics." Complex Manifolds 2.1 (2015): 140-167, electronic only. <http://eudml.org/doc/275875>.

@article{DiegoConti2015,
abstract = {We introduce and study a notion of invariant intrinsic torsion geometrywhich appears, for instance, in connection with the Bryant-Salamon metric on the spinor bundle over S3. This space is foliated by sixdimensional hypersurfaces, each of which carries a particular type of SO(3)-structure; the intrinsic torsion is invariant under SO(3). The last condition is sufficient to imply local homogeneity of such geometries, and this allows us to give a classification. We close the circle by showing that the Bryant-Salamon metric is the unique complete metric with holonomy G2 that arises from SO(3)-structures with invariant intrinsic torsion.},
author = {Diego Conti, Thomas Bruun Madsen},
journal = {Complex Manifolds},
keywords = {Bryant-Salamon metric; spinor bundle; holonomy; invariant intrinsic torsion},
language = {eng},
number = {1},
pages = {140-167, electronic only},
title = {Invariant torsion and G2-metrics},
url = {http://eudml.org/doc/275875},
volume = {2},
year = {2015},
}

TY - JOUR
AU - Diego Conti
AU - Thomas Bruun Madsen
TI - Invariant torsion and G2-metrics
JO - Complex Manifolds
PY - 2015
VL - 2
IS - 1
SP - 140
EP - 167, electronic only
AB - We introduce and study a notion of invariant intrinsic torsion geometrywhich appears, for instance, in connection with the Bryant-Salamon metric on the spinor bundle over S3. This space is foliated by sixdimensional hypersurfaces, each of which carries a particular type of SO(3)-structure; the intrinsic torsion is invariant under SO(3). The last condition is sufficient to imply local homogeneity of such geometries, and this allows us to give a classification. We close the circle by showing that the Bryant-Salamon metric is the unique complete metric with holonomy G2 that arises from SO(3)-structures with invariant intrinsic torsion.
LA - eng
KW - Bryant-Salamon metric; spinor bundle; holonomy; invariant intrinsic torsion
UR - http://eudml.org/doc/275875
ER -

References

top
  1. [1] I. Agricola, A. Ferreira, and T. Friedrich. The classification of naturally reductive homogeneous spaces in dimension n 6 6. Differential Geom. Appl., 39:59–92, 2015. Zbl06476496
  2. [2] W. Ambrose and I. M. Singer. On homogeneous Riemannian manifolds. Duke Math. J., 25:647–669, 1958. Zbl0134.17802
  3. [3] M. Atiyah and E. Witten. M-theory dynamics on a manifold of G2 holonomy. Adv. Theor. Math. Phys., 6(1):1–106, 2002. Zbl1033.81065
  4. [4] Y. V. Bazaikin and O. A. Bogoyavlenskaya. Complete Riemannian metrics with holonomy group G2 on deformations of cones over S3 × S3. Math. Notes, 93(5-6):643–653, 2013. Translation of Mat. Zametki 93 (2013), no. 5, 645–657. [WoS][Crossref] Zbl1281.53052
  5. [5] L. Bedulli and L. Vezzoni. The Ricci tensor of SU(3)-manifolds. J. Geom. Phys., 57(4):1125–1146, 2007. [Crossref] Zbl1126.53017
  6. [6] F. Belgun, V. Cort´es, M. Freibert, and O. Goertsches. On the boundary behaviour of leӔ-invariant Hitchin and hypo flows. J. London Math. Soc., (2015) 92 (1): 41-62. Zbl06483984
  7. [7] E. Bonan. Sur des vari´et´es riemanniennes `a groupe d’holonomie G2 ou Spin(7). C. R. Acad. Sci. Paris S´er. A-B, 262:A127– A129, 1966. Zbl0134.39402
  8. [8] A. Brandhuber, J. Gomis, S. S. Gubser, and S. Gukov. Gauge theory at large N and new G2 holonomy metrics. Nuclear Phys. B, 611(1-3):179–204, 2001. Zbl0971.81071
  9. [9] R. L. Bryant. Calibrated embeddings in the special Lagrangian and coassociative cases. Special issue in memory of Alfred Gray (1939–1998). Ann. Global Anal. Geom. 18(3-4): 405–435, 2000. 
  10. [10] R. L. Bryant. Non-embedding and non-extension results in special holonomy. In The many facets of geometry, pages 346– 367. Oxford Univ. Press, Oxford, 2010. Zbl1221.53084
  11. [11] R. L. Bryant and S. M. Salamon. On the construction of some complete metrics with exceptional holonomy. Duke Math. J., 58(3):829–850, 1989. Zbl0681.53021
  12. [12] S. Chiossi and ´ O. Maci´a. SO(3)-structures on 8-manifolds. Ann. Global Anal. Geom., 43(1):1–18, 2013. Zbl1273.53019
  13. [13] S. Chiossi and S. Salamon. The intrinsic torsion of SU(3) and G2 structures. In Differential geometry, Valencia, 2001, pages 115–133. World Sci. Publ., River Edge, NJ, 2002. Zbl1024.53018
  14. [14] Z. W. Chong, M. Cvetiˇc, G. W. Gibbons, H. L¨u, C. N. Pope, and P. Wagner. General metrics of G2 holonomy and contraction limits. Nuclear Phys. B, 638(3):459–482, 2002. Zbl0997.57047
  15. [15] R. Cleyton and A. Swann. Cohomogeneity-one G2-structures. J. Geom. Phys., 44(2–3):202–220, 2002. [Crossref] Zbl1025.53024
  16. [16] R. Cleyton and A. Swann. Einstein metrics via intrinsic or parallel torsion. Math. Z., 247(3): 513–528, 2004. Zbl1069.53041
  17. [17] D. Conti and T. B. Madsen. Harmonic structures and intrinsic torsion. Transform. Groups 20(3): 699-723, 2015. Zbl1328.53040
  18. [18] M. Cvetiˇc, G. W. Gibbons, H. L¨u, and C. N. Pope. Cohomogeneity one manifolds of Spin(7) and G2 holonomy. Phys. Rev. D (3), 65(10):106004, 29, 2002. 
  19. [19] G. W. Gibbons, H. L¨u, C. N. Pope, and K. S. Stelle. Supersymmetric domain walls from metrics of special holonomy. Nuclear Phys. B, 623(1-2):3–46, 2002. Zbl1036.83506
  20. [20] D. Giovannini. Special structures and symplectic geometry. PhD thesis, University of Turin, 2003. 
  21. [21] N. Hitchin. Stable forms and special metrics. In Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000), volume 288 of Contemp. Math., pages 70–89. Amer. Math. Soc., Providence, RI, 2001. 
  22. [22] S. Karigiannis and J. Lotay. Deformation theory of G2 conifolds. arXiv:1212.6457 [math.DG], 2012. 
  23. [23] S. Kobayashi and K. Nomizu. Foundations of differential geometry. Vol I. Interscience Publishers, a division of John Wiley & Sons, New York-Lond on, 1963. Zbl0119.37502
  24. [24] Y. G. Nikonorov and E. D. Rodionov. Compact homogeneous Einstein 6-manifolds. Differential Geometry and its Applications, 19(3):369–378, 2003. Zbl1045.53031
  25. [25] C. N. Pope. Homogeneous Einstein Metrics on SO(n). arXiv:1001.2776, 2010. 
  26. [26] R. Reyes Carri´on. A generalization of the notion of instanton. Differential Geom. Appl., 8(1):1–20, 1998. [Crossref] Zbl0902.53036
  27. [27] F. Tricerri and L. Vanhecke. Homogeneous structures on Riemannian manifolds, volume 83 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1983. Zbl0509.53043

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.