A generalization of the saddle point method with applications

Martin Schechter

Annales Polonici Mathematici (1992)

  • Volume: 57, Issue: 3, page 269-281
  • ISSN: 0066-2216

Abstract

top
We show that one can drop an important hypothesis of the saddle point theorem without affecting the result. We then show how this leads to stronger results in applications.

How to cite

top

Martin Schechter. "A generalization of the saddle point method with applications." Annales Polonici Mathematici 57.3 (1992): 269-281. <http://eudml.org/doc/275879>.

@article{MartinSchechter1992,
abstract = {We show that one can drop an important hypothesis of the saddle point theorem without affecting the result. We then show how this leads to stronger results in applications.},
author = {Martin Schechter},
journal = {Annales Polonici Mathematici},
keywords = {saddle point theorem; mountain pass theorem; Dirichlet problem; double resonance; saddle point method; existence; boundary value problems},
language = {eng},
number = {3},
pages = {269-281},
title = {A generalization of the saddle point method with applications},
url = {http://eudml.org/doc/275879},
volume = {57},
year = {1992},
}

TY - JOUR
AU - Martin Schechter
TI - A generalization of the saddle point method with applications
JO - Annales Polonici Mathematici
PY - 1992
VL - 57
IS - 3
SP - 269
EP - 281
AB - We show that one can drop an important hypothesis of the saddle point theorem without affecting the result. We then show how this leads to stronger results in applications.
LA - eng
KW - saddle point theorem; mountain pass theorem; Dirichlet problem; double resonance; saddle point method; existence; boundary value problems
UR - http://eudml.org/doc/275879
ER -

References

top
  1. [AH] H. Amann and P. Hess, A multiplicity result for a class of elliptic boundary value problems, Proc. Roy. Soc. Edinburgh 84A (1979), 145-151. Zbl0416.35029
  2. [AP] A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (1973), 231-247. Zbl0288.35020
  3. [AR] A. Ambrosetti and P. H. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal. 14 (1973), 349-381. Zbl0273.49063
  4. [BBF] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with 'strong' resonance at infinity, Nonlinear Anal. 7 (1983), 981-1012. Zbl0522.58012
  5. [BF] H. Berestycki and D. G. de Figueiredo, Double resonance in semilinear elliptic problems, Comm. Partial Differential Equations 6 (1981), 91-120. Zbl0468.35043
  6. [BP] M. Berger and E. Podolak, On the solution of a nonlinear Dirichlet problem, Indiana Univ. Math. J. 24 (1975), 837-846. Zbl0329.35026
  7. [BS] M. S. Berger and M. Schechter, On the solvability of semilinear gradient operator equations, Adv. in Math. 25 (1977), 97-132. Zbl0354.47025
  8. [BN] H. Brezis and L. Nirenberg, Remarks on finding critical points, to appear. Zbl0751.58006
  9. [Cac1] N. P. Cac, On an elliptic boundary value problem at double resonance, J. Math. Anal. Appl. 132 (1988), 473-483. Zbl0682.35043
  10. [Cac2] N. P. Cac, On the number of solutions of an elliptic boundary value problem with jumping nonlinearity, Nonlinear Anal. 13 (1989), 341-351. Zbl0717.35031
  11. [Cac3] N. P. Cac, On nontrivial solutions of a Dirichlet problem whose jumping nonlinearity crosses a multiple eigenvalue, J. Differential Equations 80 (1989), 379-404. Zbl0713.35036
  12. [Cac4] N. P. Cac, On a boundary value problem with non-smooth jumping non-linearity, to appear. 
  13. [Cas] A. Castro, Hammerstein integral equations with indefinite kernel, Internat. J. Math. Math. Sci. 1 (1978), 187-201. Zbl0391.45007
  14. [D] E. N. Dancer, Multiple solutions of asymptotically homogeneous problems, to appear. Zbl0850.35043
  15. [DF] D. G. de Figueiredo, Positive solutions of some classes of semilinear elliptic problems, in: Proc. Sympos. Pure Math. 45, Amer. Math. Soc., 1986, 371-379. 
  16. [DFG] D. G. de Figueiredo et J. P. Gossez, Conditions de non-résonance pour certains problèmes elliptiques semi-linéaires, C. R. Acad. Sci. Paris 302 (1986), 543-545. Zbl0596.35049
  17. [DFLN] D. G. de Figueiredo, P. L. Lions and R. D. Nussbaum, A priori estimates and existence results for positive solutions of semilinear elliptic equations, J. Math. Pures Appl. 61 (1982), 41-63. Zbl0452.35030
  18. [GK] T. Gallouet et O. Kavian, Résultats d'existence et de non-existence pour certains problèmes demi linéaires d l'infini, Ann. Fac. Sci. Toulouse Math. 3 (1981), 201-246. Zbl0495.35001
  19. [H] P. Hess, On a nonlinear elliptic boundary value problem of the Ambrosetti-Prodi type, Boll. Un. Mat. Ital. 17A (1980), 189-192. Zbl0519.35028
  20. [KW] J. L. Kazdan and F. W. Warner, Remarks on some quasilinear elliptic equations, Comm. Pure Appl. Math. 28 (1975), 567-597. Zbl0325.35038
  21. [LL] E. A. Landesman and A. C. Lazer, Nonlinear perturbations of linear elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970), 609-623. Zbl0193.39203
  22. [La] A. C. Lazer, Introduction to multiplicity theory for boundary value problems with asymmetric nonlinearities, in: Partial Differential Equations, F. Cordoso et al. (eds.), Lecture Notes in Math. 1324, Springer, 1988, 137-165. 
  23. [LM1] A. C. Lazer and P. J. McKenna, Multiplicity results for a class of semilinear elliptic and parabolic boundary value problems, J. Math. Anal. Appl. 107 (1985), 371-395. Zbl0584.35053
  24. [LM2] A. C. Lazer and P. J. McKenna, Critical point theory and boundary value problems with nonlinearities crossing multiple eigenvalues, I, II, Comm. Partial Differential Equations 10 (1985), 107-150; 11 (1986), 1653-1676. Zbl0572.35036
  25. [LM3] A. C. Lazer and P. J. McKenna, Multiplicity of solutions of nonlinear boundary value problems with nonlinearities crossing several hiqher eigenvalues, J. Reine Angew. Math. 368 (1986), 184-200. Zbl0588.35036
  26. [Lin] S. S. Lin, Some results for semilinear differential equations at resonance, J. Math. Anal. Appl. 93 (1983), 574-592. Zbl0531.47039
  27. [LM] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems I, Springer, Berlin 1972. 
  28. [Lio] P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev. 24 (1982), 441-457. 
  29. [MW] J. Mawhin and M. Willem, Critical points of convex perturbations of some indefinite quadratic forms and semilinear boundary value problems at resonance, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (1986), 431-453. Zbl0678.35091
  30. [N1] L. Nirenberg, Variational and topological methods in nonlinear problems, Bull. Amer. Math. Soc. 4 (1981), 267-302. Zbl0468.47040
  31. [N2] L. Nirenberg, Variational methods in nonlinear problems, in: Lecture Notes in Math. 1365, Springer, 1988, 100-119. 
  32. [P] E. Podolak, On the range of operator equations with an asymptotically nonlinear term, Indiana Univ. Math. J. 25 (1976), 1127-1137. Zbl0353.47035
  33. [Ra1] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, in: Eigenvalues of Nonlinear Problems, G. Prodi (ed.), C.I.M.E., Ed. Cremonese, Roma 1975, 141-195. 
  34. [Ra2] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65, Amer. Math. Soc., 1986. 
  35. [Ru] B. Ruf, On nonlinear elliptic boundary value problems with jumping nonlinearities, Ann. Mat. Pura Appl. 128 (1980), 133-151. 
  36. [Sc1] M. Schechter, Nonlinear elliptic boundary value problems at strong resonance, Amer. J. Math. 112 (1990), 439-460. Zbl0721.35023
  37. [Sc2] M. Schechter, Solution of nonlinear problems at resonance, Indiana Univ. Math. J. 39 (1990), 1061-1080. Zbl0796.35058
  38. [Sc3] M. Schechter, A bounded mountain pass lemma without the (PS) condition and applications, Trans. Amer. Math. Soc. 331 (1992), 681-703. Zbl0757.35026
  39. [Sc4] M. Schechter, Nonlinear elliptic boundary value problems at resonance, Nonlinear Anal. 14 (1990), 889-903. Zbl0708.35033
  40. [Sc5] M. Schechter, A variation of the mountain pass lemma and applications, J. London Math. Soc. (2) 44 (1991), 491-502. Zbl0756.35032
  41. [Sc6] M. Schechter, The Hampwile theorem for nonlinear eigenvalues, Duke Math. J. 59 (1989), 325-335. Zbl0701.47036
  42. [So] S. Solimini, Some remarks on the number of solutions of some nonlinear elliptic problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), 143-156. Zbl0583.35044
  43. [Ta] E. Tarafdar, An approach to nonlinear elliptic boundary value problems, J. Austral. Math. Soc. 34 (1983), 316-335. Zbl0533.47054
  44. [Th1] K. Thews, A reduction method for some nonlinear Dirichlet problems, Nonlinear Anal. 3 (1979), 794-813. 
  45. [Th2] K. Thews, Nontrivial solutions of elliptic equations at resonance, Proc. Roy Soc. Edinburgh 85A (1980), 119-129. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.