A complete classification of four-dimensional paraKähler Lie algebras
Complex Manifolds (2015)
- Volume: 2, Issue: 1, page 733-748
- ISSN: 2300-7443
Access Full Article
topAbstract
topHow to cite
topGiovanni Calvaruso. "A complete classification of four-dimensional paraKähler Lie algebras." Complex Manifolds 2.1 (2015): 733-748. <http://eudml.org/doc/275886>.
@article{GiovanniCalvaruso2015,
abstract = {We consider paraKähler Lie algebras, that is, even-dimensional Lie algebras g equipped with a pair (J, g), where J is a paracomplex structure and g a pseudo-Riemannian metric, such that the fundamental 2-form Ω(X, Y) = g(X, JY) is symplectic. A complete classification is obtained in dimension four.},
author = {Giovanni Calvaruso},
journal = {Complex Manifolds},
keywords = {Lie algebras; paraKähler structures; pseudo-Riemannian homogeneous spaces; para-Kähler structure; para-Kähler Lie algebra; pseudo-Riemannian; homogeneous space; para-Kähler Ricci soliton},
language = {eng},
number = {1},
pages = {733-748},
title = {A complete classification of four-dimensional paraKähler Lie algebras},
url = {http://eudml.org/doc/275886},
volume = {2},
year = {2015},
}
TY - JOUR
AU - Giovanni Calvaruso
TI - A complete classification of four-dimensional paraKähler Lie algebras
JO - Complex Manifolds
PY - 2015
VL - 2
IS - 1
SP - 733
EP - 748
AB - We consider paraKähler Lie algebras, that is, even-dimensional Lie algebras g equipped with a pair (J, g), where J is a paracomplex structure and g a pseudo-Riemannian metric, such that the fundamental 2-form Ω(X, Y) = g(X, JY) is symplectic. A complete classification is obtained in dimension four.
LA - eng
KW - Lie algebras; paraKähler structures; pseudo-Riemannian homogeneous spaces; para-Kähler structure; para-Kähler Lie algebra; pseudo-Riemannian; homogeneous space; para-Kähler Ricci soliton
UR - http://eudml.org/doc/275886
ER -
References
top- [1] D.V. Alekseevsky, C. Medori, A. Tomassini, Homogeneous para-Kähler Einstein manifolds, Russian Math. Surveys, 64 (2009), 1–43. [Crossref][WoS] Zbl1179.53050
- [2] A. Andrada, M.L. Barberis, I.G. Dotti, G. Ovando, Product structures on four-dimensional solvable Lie algebras, Homology, Homotopy and Applications, 7 (2005), 9–37. Zbl1165.17303
- [3] P. Baird and L. Danielo, Three-dimensional Ricci solitons which project to surfaces, J. Reine Angew.Math., 608 (2007), 65–91. [WoS] Zbl1128.53020
- [4] N. Blazić, S. Vukmirović, Four-dimensional Lie algebras with a para-hypercomplex structure, Rocky Mountain J. Math., 40 (2010), 1391–1439. Zbl1207.53071
- [5] M. Brozos-Vazquez, G. Calvaruso, E. Garcia-Rio and S. Gavino-Fernandez, Three-dimensional Lorentzian homogeneous Ricci solitons, Israel J. Math., 188 (2012), 385–403. Zbl1264.53052
- [6] G. Calvaruso, Symplectic, complex and Kähler structures on four-dimensional generalized symmetric spaces, Diff. Geom. Appl., 29 (2011), 758–769. [Crossref] Zbl1228.53037
- [7] G. Calvaruso, Four-dimensional paraKähler Lie algebras: classification and geometry, Houston J. Math., to appear.
- [8] G. Calvaruso and A. Fino, Complex and paracomplex structures on homogeneous pseudo-Riemannian four-manifolds, Int. J. Math., 24 (2013), 1250130, 28 pp. [Crossref][WoS] Zbl1266.53033
- [9] G. Calvaruso and A. Fino, Ricci solitons and geometry of four-dimensional non-reductive homogeneous spaces, Canad. J. Math., 64 (2012), 778–804. Zbl1252.53056
- [10] G. Calvaruso and A. Fino, Four-dimensional pseudo-Riemannian homogeneous Ricci soliton, Arxiv: 1111.6384. To appear in Int. J. Geom. Methods Mod. Phys. [WoS]
- [11] H.-D. Cao, Recent progress on Ricci solitons, Recent advances in geometric analysis, 1–38, Adv. Lect. Math. (ALM), 11, Int. Press, Somerville, MA, 2010.
- [12] V. Cruceanu, P. Fortuny and P.M. Gadea, A survey on paracomplex geometry, Rocky Mount. J. Math., 26 (1996), 83–115. Zbl0856.53049
- [13] B.Y. Chu, Symplectic homogeneous spaces, Trans. Amer. Math. Soc., 197 (1974), 145–159. Zbl0261.53039
- [14] A.S. Dancer and M.Y. Wang, Some new examples on non-Ka¨ hler Ricci solitons, Math. Res. Lett., 16 (2009), no. 2, 349–363. [Crossref]
- [15] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7 (1978), 259–280. Zbl0378.53018
- [16] J. Lauret, Ricci solitons solvmanifolds, J. Reine Angew. Math., 650 (2011), 1–21.
- [17] G. Ovando, Invariant complex structures on solvable real Lie groups, Manuscripta Math., 103, (2000), 19–30. Zbl0972.32017
- [18] G. Ovando, Four-dimensional symplectic Lie algebras, Beiträge Algebra Geom., 47(2006), no. 2, 419–434. Zbl1155.53042
- [19] G. Ovando, Invariant pseudo-Kähler metrics in dimension four, J. Lie Theory, 16 (2006), 371–391. Zbl1102.32011
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.