The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A complete classification of four-dimensional paraKähler Lie algebras”

Homogeneous Riemannian manifolds with generic Ricci tensor

Włodzimierz Jelonek (2001)

Annales Polonici Mathematici

Similarity:

We describe homogeneous manifolds with generic Ricci tensor. We also prove that if 𝔤 is a 4-dimensional unimodular Lie algebra such that dim[𝔤,𝔤] ≤ 2 then every left-invariant metric on the Lie group G with Lie algebra 𝔤 admits two mutually opposite compatible left-invariant almost Kähler structures.

Some properties of para-Kähler-Walker metrics

Mustafa Özkan, Murat İşcan (2014)

Annales Polonici Mathematici

Similarity:

A Walker 4-manifold is a pseudo-Riemannian manifold (M₄,g) of neutral signature, which admits a field of parallel null 2-planes. We study almost paracomplex structures on 4-dimensional para-Kähler-Walker manifolds. In particular, we obtain conditions under which these almost paracomplex structures are integrable, and the corresponding para-Kähler forms are symplectic. We also show that Petean's example of a nonflat indefinite Kähler-Einstein 4-manifold is a special case of our constructions. ...

Homogeneous quaternionic Kähler structures on Alekseevskian 𝒲-spaces

Wafaa Batat, P. M. Gadea, Jaime Muñoz Masqué (2012)

Annales Polonici Mathematici

Similarity:

The homogeneous quaternionic Kähler structures on the Alekseevskian 𝒲-spaces with their natural quaternionic structures, each of these spaces described as a solvable Lie group, and the type of such structures in Fino's classification, are found.

The construction of 3-Lie 2-algebras

Chunyue Wang, Qingcheng Zhang (2018)

Czechoslovak Mathematical Journal

Similarity:

We construct a 3-Lie 2-algebra from a 3-Leibniz algebra and a Rota-Baxter 3-Lie algebra. Moreover, we give some examples of 3-Leibniz algebras.

Lie Algebra bundles on s-Kähler manifolds, with applications to Abelian varieties

Giovanni Gaiffi, Michele Grassi (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

We prove that one can obtain natural bundles of Lie algebras on rank two s -Kähler manifolds, whose fibres are isomorphic respectively to so ( s + 1 , s + 1 ) , su ( s + 1 , s + 1 ) and sl ( 2 s + 2 , ) . These bundles have natural flat connections, whose flat global sections generalize the Lefschetz operators of Kähler geometry and act naturally on cohomology. As a first application, we build an irreducible representation of a rational form of su ( s + 1 , s + 1 ) on (rational) Hodge classes of Abelian varieties with rational period matrix.