Optimal feedback control of Ginzburg-Landau equation for superconductivity via differential inclusion
Discussiones Mathematicae, Differential Inclusions, Control and Optimization (1996)
- Volume: 16, Issue: 1, page 5-41
- ISSN: 1509-9407
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] V. Barbu, Optimal feedback controls for a class of nonlinear distributed parameter systems, SIAM J. Control and Optim. 21 (1983), 871-894. Zbl0524.49015
- [2] V. Barbu and Da Prato, Hamilton-Jacobi equations and synthesis of nonlinear control processes in Hilbert spaces, J. Differential Equations 48 (1983), 350-372. Zbl0471.49026
- [3] M.S. Berger and Y.Y. Chen, Symmetric vortices for the Ginzburg-Landau equations and the nonlinear desingularization phenomenon, J. Functional Analysis, (1989).
- [4] L.D. Berkovitz, Optimal feedback controls, SIAM J. Control and Optim. 27 (1989), 991-1007. Zbl0684.49008
- [5] P. Blennerhassett, On the generation of waves by wind, Philos. Trans. Roy. Soc. London, Ser. A. 298 (1980), 451-494. Zbl0445.76013
- [6] H. Brezis, 'Analyse Fonctionnelle: Theorie et Applications', Masson, Paris 1987.
- [7] H.O. Fattorini, A unified theory of necessary conditions for nonlinear nonconvex control systems, Appl. Math. and Optim. 15 (1987), 141-185. Zbl0616.49015
- [8] V.L. Ginzburg and L.D. Landau, Concerning the theory of superconductivity, Soviet Physics JETP 20 (1950), 1064-1082.
- [9] L.P. Gor'kov, Microscopic derivation of the Ginzburg-Landau equations in the theory of superconductivity, Soviet Physics JETP 36 (1959), 1918-1923.
- [10] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, New York 1981. Zbl0456.35001
- [11] S. Hou, Implicit function theorem in topological spaces, Applicable Analysis 13 (1982), 209-217. Zbl0451.54016
- [12] L. Jacobs and C. Rebbi, Interaction energy of superconducting vortices, Physics Rev. B 19 (1978), 4486-4494.
- [13] Y. Kuramoto and T. Tsuzuki, On the formation of dissipative structures in reaction-diffusion systems, Progr. Theoret. Physics Suppl. 54 (1975), 687-699.
- [14] Y. Lin and Y. Yang, Computation of superconductivity in thin films, IMA Preprint, Series #541, 1989.
- [15] H.T. Moon, P. Huerre, and L.G. Redekopp, Transitions to chaos in the Ginzburg-Landau equation, Physica D, 7 (1983), 135-150. Zbl0558.58030
- [16] A. Pazy, 'Semigroups of Linear Operators and Applications to Partial Differential Equations', Springer, New York 1983. Zbl0516.47023
- [17] J.D.L. Rowland and R.B. Vinter, Construction of optimal feedback controls, Systems and Control Letters 16 (1991), 357-367. Zbl0736.49020
- [18] Y. Yang, The Ginzburg-Landau equations for superconducting film and Meissner effect, J. Math. Phys. 31 (1990), 1284-1289. Zbl0702.76127
- [19] Y. You, A nonquadratic Bolza problem and a quasi-Riccati equation for distributed parameter systems, SIAM J. Control and Optim. 25 (1987), 904-920. Zbl0632.49004
- [20] Y. You, Nonlinear optimal control and synthesis of thermal nuclear reactors, in 'Distributed Parameter Control Systems: New Trends and Applications', (G. Chen, et al, Ed.), 445-474, Marcel Dekker, New York 1991.