Vector bundles of finite rank on complete intersections of finite codimension in ind-Grassmannians

Svetlana Ermakova

Complex Manifolds (2015)

  • Volume: 2, Issue: 1, page 78-88, electronic only
  • ISSN: 2300-7443

Abstract

top
In this article we establish an analogue of the Barth-Van de Ven-Tyurin-Sato theorem.We prove that a finite rank vector bundle on a complete intersection of finite codimension in a linear ind-Grassmannian is isomorphic to a direct sum of line bundles.

How to cite

top

Svetlana Ermakova. "Vector bundles of finite rank on complete intersections of finite codimension in ind-Grassmannians." Complex Manifolds 2.1 (2015): 78-88, electronic only. <http://eudml.org/doc/275958>.

@article{SvetlanaErmakova2015,
abstract = {In this article we establish an analogue of the Barth-Van de Ven-Tyurin-Sato theorem.We prove that a finite rank vector bundle on a complete intersection of finite codimension in a linear ind-Grassmannian is isomorphic to a direct sum of line bundles.},
author = {Svetlana Ermakova},
journal = {Complex Manifolds},
keywords = {Vector bundles; Barth-Van de Ven-Tyurin-Sato theorem; ind-varieties; vector bundles; Barth-Van de ven-Tyurin-Sato theorem},
language = {eng},
number = {1},
pages = {78-88, electronic only},
title = {Vector bundles of finite rank on complete intersections of finite codimension in ind-Grassmannians},
url = {http://eudml.org/doc/275958},
volume = {2},
year = {2015},
}

TY - JOUR
AU - Svetlana Ermakova
TI - Vector bundles of finite rank on complete intersections of finite codimension in ind-Grassmannians
JO - Complex Manifolds
PY - 2015
VL - 2
IS - 1
SP - 78
EP - 88, electronic only
AB - In this article we establish an analogue of the Barth-Van de Ven-Tyurin-Sato theorem.We prove that a finite rank vector bundle on a complete intersection of finite codimension in a linear ind-Grassmannian is isomorphic to a direct sum of line bundles.
LA - eng
KW - Vector bundles; Barth-Van de Ven-Tyurin-Sato theorem; ind-varieties; vector bundles; Barth-Van de ven-Tyurin-Sato theorem
UR - http://eudml.org/doc/275958
ER -

References

top
  1. [1] Barth W., Van de Ven A. On the geometry in codimension 2 in Grassmann manifolds, Lecture Notes in Math. 412. Springer- Verlag, 1974. P. 1-35. Zbl0299.14024
  2. [2] Donin J., Penkov I. Finite rank vector bundles on inductive limits of Grassmannians, IMRN. 2003. No 34. P. 1871-1887. Zbl1074.14530
  3. [3] Griffiths P. A., Harris J. Principles of Algebraic Geometry, New York: Wiley, 1978. Zbl0408.14001
  4. [4] Sato E. On the decomposability of infinitely extendable vector bundles on projective spaces and Grassmann varieties, J. Math. Kyoto Univ. 1977. No 17. P. 127-150. Zbl0362.14005
  5. [5] Penkov I., Tikhomirov A.S. Linear ind-Grassmannians, Pure and Applied Mathematics Quarterly. 2014. 10. N-2. P.289-323. [WoS] 
  6. [6] Penkov I., Tikhomirov A.S. On the Barth–Van de Ven–Tyurin–Sato theorem, arXiv:1405.3897 [math.AG]. [WoS] 
  7. [7] Penkov I., Tikhomirov A. S. Rank-2 vector bundles on ind-Grassmannians, Algebra, arithmetic,and geometry: in honor of Yu. I. Manin, V II, Progr. Math., V. 270. Birkhaeuser, Boston-Basel-Berlin, 2009. P. 555-572. Zbl1200.14102
  8. [8] Tyurin A. N. Vector bundles of finite rank over infinite varieties, Math. USSR. Izvestija. 1976. No 10. P. 1187-1204. Zbl0379.14004
  9. [9] Hartshorne R. Algebraic Geometry, New York: Springer-Verlag, 1977. 
  10. [10] Ермакова С.М. О пространстве путей на полных пересечениях в грассманианах, МАИС. 2014. Т. 21. No 4. C.35-46 (English translation: Yermakova S.M. On the variety of paths on complete intersections in Grassmannians, MAIS. 2014. V. 21. No 4. P. 35-46). 
  11. [11] Ермакова С.М. Равномерность векторных расслоений конечного ранга на полных пересечениях конечной коразмерности в линейных инд-грассманианах, МАИС. 2015. Т. 22. No 2. C. 209-2018 (English translation: Yermakova S.M. Uniformity of vector bundles of finite rank on complete intersections of finite codimension in a linear ind- Grassmannian, MAIS. 2015. V. 22. No 2. P. 209-2018). 
  12. [12] Пенков И.Б., Тихомиров А.С. Тривиальность векторных расслоений на скрученных инд-грассманианах, Математический сборник. 2011. 202. No 1. C. 65-104 (English translation: Penkov I.B., Tikhomirov A.S. Triviality of vector bundles on twisted ind-Grassmannians, Sbornik: Mathematics. 2011. 202, No 1. P. 61-99). 
  13. [13] Шафаревич И. Р. Основы алгебраической геометрии,МЦНМО, Москва, 2007. (English translation: Shafarevich I.R. Foundations of Algebraic Geometry, MCCME, Moscow. 2007). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.