New criteria for H-tensors and an application
Open Mathematics (2015)
- Volume: 13, Issue: 1, page 256-265
- ISSN: 2391-5455
Access Full Article
topAbstract
topHow to cite
topFeng Wang, and Deshu Sun. "New criteria for H-tensors and an application." Open Mathematics 13.1 (2015): 256-265. <http://eudml.org/doc/275959>.
@article{FengWang2015,
abstract = {Some new criteria for identifying H-tensors are obtained. As an application, some sufficient conditions of the positive definiteness for an even-order real symmetric tensor are given. Advantages of results obtained are illustrated by numerical examples.},
author = {Feng Wang, Deshu Sun},
journal = {Open Mathematics},
keywords = {H-tensors; Symmetric tensors; Positive definiteness; Irreducible; -tensors; real symmetric tensors; nonzero elements chain; positive definiteness},
language = {eng},
number = {1},
pages = {256-265},
title = {New criteria for H-tensors and an application},
url = {http://eudml.org/doc/275959},
volume = {13},
year = {2015},
}
TY - JOUR
AU - Feng Wang
AU - Deshu Sun
TI - New criteria for H-tensors and an application
JO - Open Mathematics
PY - 2015
VL - 13
IS - 1
SP - 256
EP - 265
AB - Some new criteria for identifying H-tensors are obtained. As an application, some sufficient conditions of the positive definiteness for an even-order real symmetric tensor are given. Advantages of results obtained are illustrated by numerical examples.
LA - eng
KW - H-tensors; Symmetric tensors; Positive definiteness; Irreducible; -tensors; real symmetric tensors; nonzero elements chain; positive definiteness
UR - http://eudml.org/doc/275959
ER -
References
top- [1] Qi, L.: Eigenvalues of a real supersymetric tensor. J. Symbolic Comput. 40 (2005), 1302-1324. Zbl1125.15014
- [2] Kannana, M.R., Mondererb, N.S., Bermana, A.: Some properties of strong H-tensors and general H-tensors. Linear Algebra Appl. 476 (2015), 42-55. [WoS]
- [3] Li, C. Q., Qi, L., Li, Y.T.:MB-tensors andMB0-tensors. Linear Algebra Appl. 484(2015), 141-153. Zbl1325.15022
- [4] Yang, Y., Yang, Q.:Fruther results for Perron-Frobenius theorem for nonnegative tensors. SIAM. J. Mayrix Anal. Appl. 31 (2010), 2517-2530. Zbl1227.15014
- [5] Kolda, T.G., Mayo, J.R.:Shifted power method for computing tensor eigenpairs. SIAM J. Matrix Anal. Appl. 32 (4) (2011), 1095- 1124. [Crossref][WoS] Zbl1247.65048
- [6] Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach, in: CAMSAP’05: Proceeding of the IEEE International Workshop on Computational Advances in MultiSensor Adaptive Processing, 2005, pp. 129-132.
- [7] Qi, L.:Eigenvalues and invariants of tensors. J. Math. Anal. Appl. 325 (2007), 1363-1377. Zbl1113.15020
- [8] Ni, Q., Qi, L., Wang, F.:An eigenvalue method for the positive definiteness identification problem. IEEE Trans. Automat. Control. 53 (2008), 1096-1107.
- [9] Ni, G., Qi, L., Wang, F., Wang, Y.:The degree of the E-characteristic polynomial of an even order tensor. J. Math. Anal. Appl. 329(2007), 1218-1229. Zbl1154.15304
- [10] Zhang, L., Qi, L., Zhou, G.:M-tensors and some applications. SIAM J. Matrix Anal. Appl. 32(2014), 437-452. Zbl1307.15034
- [11] Ding, W., Qi, L., Wei, Y.:M-tensors and nonsingular M-tensors. Linear Algebra Appl. 439 (2013), 3264-3278. Zbl1283.15074
- [12] Li, C. Q., Wang, F., Zhao, J.X., Zhu, Y., Li, Y.T.: Criterions for the positive definiteness of real supersymmetric tensors. J. Comput. Appl. Math. 255(2014), 1-14. [WoS] Zbl1291.15065
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.