Seven Proofs for the Subadditivity of Expected Shortfall
Dependence Modeling (2015)
- Volume: 3, Issue: 1, page 126-140, electronic only
- ISSN: 2300-2298
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective risk aversion. J. Bank. Finance, 26(7), 1505–1518.
- [2] Acerbi, C. and Tasche, D. (2002). On the coherence of expected shortfall. J. Bank. Finance, 26(7), 1487–1503.
- [3] Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of risk. Math. Finance, 9(3), 203–228. [Crossref] Zbl0980.91042
- [4] BCBS (2012). Consultative Document May 2012. Fundamental review of the trading book. Basel Committee on Banking Supervision. Basel: Bank for International Settlements.
- [5] BCBS (2013). Consultative Document October 2013. Fundamental reviewof the trading book: A revisedmarket risk framework. Basel Committee on Banking Supervision. Basel: Bank for International Settlements.
- [6] BCBS (2014). Consultative Document December 2014. Fundamental review of the trading book: Outstanding issues. Basel Committee on Banking Supervision. Basel: Bank for International Settlements.
- [7] Billingsley, P. (1995). Probability and Measure. Third Edition. Wiley. Zbl0822.60002
- [8] Choquet, G. (1953). Theory of capacities. Ann. Inst. Fourier, 5, 121–293.
- [9] Cont, R., Deguest, R. and Scandolo, G. (2010). Robustness and sensitivity analysis of risk measurement procedures. Quant. Finance, 10(6), 593–606. [WoS][Crossref] Zbl1192.91191
- [10] Delbaen, F. (2012). Monetary Utility Functions. Osaka University Press.
- [11] Denneberg, D. (1994). Non-additive Measure and Integral. Springer. Zbl0826.28002
- [12] Denuit, M., Dhaene, J., Goovaerts, M.J. and Kaas, R. (2005). Actuarial Theory for Dependent Risks. Wiley. Zbl1086.91035
- [13] Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R. and Vynche, D. (2002). The concept of comonotonicity in actuarial science and finance: Theory. Insur. Math. Econ. 31(1), 3-33. [Crossref] Zbl1051.62107
- [14] Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., Tang, Q. and Vynche, D. (2006). Risk measures and comonotonicity: a review. Stoch. Models, 22, 573–606. Zbl1159.91403
- [15] Dhaene, J., Laeven, R. J., Vanduffel, S., Darkiewicz, G. and Goovaerts, M. J. (2008). Can a coherent risk measure be too subadditive? J. Risk Insur., 75(2), 365–386. [WoS]
- [16] Embrechts, P. and Hofert, M. (2013). A note on generalized inverses. Math. Methods Oper. Res., 77(3), 423–432. Zbl1281.60014
- [17] Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R. and Beleraj, A. (2014). An academic response to Basel 3.5. Risks, 2(1), 25-48.
- [18] Föllmer, H. and Schied, A. (2011). Stochastic Finance: An Introduction in Discrete Time. Walter de Gruyter, Third Edition. Zbl1126.91028
- [19] Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon. Sect. A., 14, 53–77. Zbl0045.22905
- [20] Goovaerts, M. J., Kaas, R., Dhaene, J. and Tang, Q. (2004). Some new classes of consistent risk measures. Insur.Math. Econ., 34(3), 505–516. [Crossref] Zbl1188.91087
- [21] Hoeffding, W. (1940). Massstabinvariante Korrelationstheorie. Schriften Math. Inst. Univ. Berlin, 5(5), 181–233.
- [22] Huber, P. J. (1980). Robust Statistics. First ed., Wiley Series in Probability and Statistics. Wiley, New Jersey.
- [23] Huber, P. J. and Ronchetti E. M. (2009). Robust Statistics. Second ed., Wiley Series in Probability and Statistics. Wiley, New Jersey. First ed.: Huber, P. (1980). Zbl1276.62022
- [24] IAIS (2014). Consultation Document December 2014. Risk-based global insurance capital standard. International Association of Insurance Supervisors.
- [25] Kaas, R., Goovaerts, M., Dhaene, J. and Denuit, M. (2008). Modern Actuarial Risk Theory: Using R. Springer. Zbl1148.91027
- [26] Kusuoka, S. (2001). On law invariant coherent risk measures. Adv. Math. Econ., 3, 83–95. [Crossref] Zbl1010.60030
- [27] Levy, H. and Kroll, Y. (1978). Ordering uncertain options with borrowing and lending. J. Finance, 33(2), 553-574. [Crossref]
- [28] McNeil, A. J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques, Tools. Princeton University Press. Zbl1089.91037
- [29] McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques and Tools. Revised Edition. Princeton University Press. Zbl1337.91003
- [30] Meilijson, I. and A. Nádas (1979). Convexmajorization with an application to the length of critical paths. J. Appl. Prob. 16(3), 671–677. [Crossref] Zbl0417.60025
- [31] Resnick, S.I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer. Zbl0633.60001
- [32] Rockafellar, R. T. and Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. J. Bank. Finance, 26(7), 1443–1471.
- [33] Rüschendorf, L. (2013).Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer. Zbl1266.91001
- [34] Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer. Zbl0806.62009
- [35] Van Zwet, W.R. (1980). A strong law for linear functions of order statistics. Ann. Probab., 8, 986–990. [Crossref] Zbl0448.60025
- [36] Wang, S. and Dhaene, J. (1998). Comonotonicity, correlation order and premium principles. Insur. Math. Econ., 22(3), 235– 242. [Crossref] Zbl0909.62110
- [37] Wang, S., Young, V. R. and Panjer, H. H. (1997). Axiomatic characterization of insurance prices. Insur. Math. Econ., 21(2), 173–183. [Crossref] Zbl0959.62099
- [38] Wellner, J. A. (1977). A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics. Ann. Stat., 5(3), 473–480. [Crossref] Zbl0365.62045
- [39] Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55(1), 95–115. [Crossref] Zbl0616.90005