Seven Proofs for the Subadditivity of Expected Shortfall
Dependence Modeling (2015)
- Volume: 3, Issue: 1, page 126-140, electronic only
- ISSN: 2300-2298
Access Full Article
topAbstract
topHow to cite
topPaul Embrechts, and Ruodu Wang. "Seven Proofs for the Subadditivity of Expected Shortfall." Dependence Modeling 3.1 (2015): 126-140, electronic only. <http://eudml.org/doc/275999>.
@article{PaulEmbrechts2015,
abstract = {Subadditivity is the key property which distinguishes the popular risk measures Value-at-Risk and Expected Shortfall (ES). In this paper we offer seven proofs of the subadditivity of ES, some found in the literature and some not. One of the main objectives of this paper is to provide a general guideline for instructors to teach the subadditivity of ES in a course. We discuss the merits and suggest appropriate contexts for each proof.With different proofs, different important properties of ES are revealed, such as its dual representation, optimization properties, continuity, consistency with convex order, and natural estimators.},
author = {Paul Embrechts, Ruodu Wang},
journal = {Dependence Modeling},
keywords = {Expected Shortfall; TVaR; subadditivity; comonotonicity; Value-at-Risk; risk management; education; expected shortfall; value-at-risk},
language = {eng},
number = {1},
pages = {126-140, electronic only},
title = {Seven Proofs for the Subadditivity of Expected Shortfall},
url = {http://eudml.org/doc/275999},
volume = {3},
year = {2015},
}
TY - JOUR
AU - Paul Embrechts
AU - Ruodu Wang
TI - Seven Proofs for the Subadditivity of Expected Shortfall
JO - Dependence Modeling
PY - 2015
VL - 3
IS - 1
SP - 126
EP - 140, electronic only
AB - Subadditivity is the key property which distinguishes the popular risk measures Value-at-Risk and Expected Shortfall (ES). In this paper we offer seven proofs of the subadditivity of ES, some found in the literature and some not. One of the main objectives of this paper is to provide a general guideline for instructors to teach the subadditivity of ES in a course. We discuss the merits and suggest appropriate contexts for each proof.With different proofs, different important properties of ES are revealed, such as its dual representation, optimization properties, continuity, consistency with convex order, and natural estimators.
LA - eng
KW - Expected Shortfall; TVaR; subadditivity; comonotonicity; Value-at-Risk; risk management; education; expected shortfall; value-at-risk
UR - http://eudml.org/doc/275999
ER -
References
top- [1] Acerbi, C. (2002). Spectral measures of risk: A coherent representation of subjective risk aversion. J. Bank. Finance, 26(7), 1505–1518.
- [2] Acerbi, C. and Tasche, D. (2002). On the coherence of expected shortfall. J. Bank. Finance, 26(7), 1487–1503.
- [3] Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of risk. Math. Finance, 9(3), 203–228. [Crossref] Zbl0980.91042
- [4] BCBS (2012). Consultative Document May 2012. Fundamental review of the trading book. Basel Committee on Banking Supervision. Basel: Bank for International Settlements.
- [5] BCBS (2013). Consultative Document October 2013. Fundamental reviewof the trading book: A revisedmarket risk framework. Basel Committee on Banking Supervision. Basel: Bank for International Settlements.
- [6] BCBS (2014). Consultative Document December 2014. Fundamental review of the trading book: Outstanding issues. Basel Committee on Banking Supervision. Basel: Bank for International Settlements.
- [7] Billingsley, P. (1995). Probability and Measure. Third Edition. Wiley. Zbl0822.60002
- [8] Choquet, G. (1953). Theory of capacities. Ann. Inst. Fourier, 5, 121–293.
- [9] Cont, R., Deguest, R. and Scandolo, G. (2010). Robustness and sensitivity analysis of risk measurement procedures. Quant. Finance, 10(6), 593–606. [WoS][Crossref] Zbl1192.91191
- [10] Delbaen, F. (2012). Monetary Utility Functions. Osaka University Press.
- [11] Denneberg, D. (1994). Non-additive Measure and Integral. Springer. Zbl0826.28002
- [12] Denuit, M., Dhaene, J., Goovaerts, M.J. and Kaas, R. (2005). Actuarial Theory for Dependent Risks. Wiley. Zbl1086.91035
- [13] Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R. and Vynche, D. (2002). The concept of comonotonicity in actuarial science and finance: Theory. Insur. Math. Econ. 31(1), 3-33. [Crossref] Zbl1051.62107
- [14] Dhaene, J., Denuit, M., Goovaerts, M.J., Kaas, R., Tang, Q. and Vynche, D. (2006). Risk measures and comonotonicity: a review. Stoch. Models, 22, 573–606. Zbl1159.91403
- [15] Dhaene, J., Laeven, R. J., Vanduffel, S., Darkiewicz, G. and Goovaerts, M. J. (2008). Can a coherent risk measure be too subadditive? J. Risk Insur., 75(2), 365–386. [WoS]
- [16] Embrechts, P. and Hofert, M. (2013). A note on generalized inverses. Math. Methods Oper. Res., 77(3), 423–432. Zbl1281.60014
- [17] Embrechts, P., Puccetti, G., Rüschendorf, L., Wang, R. and Beleraj, A. (2014). An academic response to Basel 3.5. Risks, 2(1), 25-48.
- [18] Föllmer, H. and Schied, A. (2011). Stochastic Finance: An Introduction in Discrete Time. Walter de Gruyter, Third Edition. Zbl1126.91028
- [19] Fréchet, M. (1951). Sur les tableaux de corrélation dont les marges sont données. Ann. Univ. Lyon. Sect. A., 14, 53–77. Zbl0045.22905
- [20] Goovaerts, M. J., Kaas, R., Dhaene, J. and Tang, Q. (2004). Some new classes of consistent risk measures. Insur.Math. Econ., 34(3), 505–516. [Crossref] Zbl1188.91087
- [21] Hoeffding, W. (1940). Massstabinvariante Korrelationstheorie. Schriften Math. Inst. Univ. Berlin, 5(5), 181–233.
- [22] Huber, P. J. (1980). Robust Statistics. First ed., Wiley Series in Probability and Statistics. Wiley, New Jersey.
- [23] Huber, P. J. and Ronchetti E. M. (2009). Robust Statistics. Second ed., Wiley Series in Probability and Statistics. Wiley, New Jersey. First ed.: Huber, P. (1980). Zbl1276.62022
- [24] IAIS (2014). Consultation Document December 2014. Risk-based global insurance capital standard. International Association of Insurance Supervisors.
- [25] Kaas, R., Goovaerts, M., Dhaene, J. and Denuit, M. (2008). Modern Actuarial Risk Theory: Using R. Springer. Zbl1148.91027
- [26] Kusuoka, S. (2001). On law invariant coherent risk measures. Adv. Math. Econ., 3, 83–95. [Crossref] Zbl1010.60030
- [27] Levy, H. and Kroll, Y. (1978). Ordering uncertain options with borrowing and lending. J. Finance, 33(2), 553-574. [Crossref]
- [28] McNeil, A. J., Frey, R. and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques, Tools. Princeton University Press. Zbl1089.91037
- [29] McNeil, A. J., Frey, R. and Embrechts, P. (2015). Quantitative Risk Management: Concepts, Techniques and Tools. Revised Edition. Princeton University Press. Zbl1337.91003
- [30] Meilijson, I. and A. Nádas (1979). Convexmajorization with an application to the length of critical paths. J. Appl. Prob. 16(3), 671–677. [Crossref] Zbl0417.60025
- [31] Resnick, S.I. (1987). Extreme Values, Regular Variation, and Point Processes. Springer. Zbl0633.60001
- [32] Rockafellar, R. T. and Uryasev, S. (2002). Conditional value-at-risk for general loss distributions. J. Bank. Finance, 26(7), 1443–1471.
- [33] Rüschendorf, L. (2013).Mathematical Risk Analysis. Dependence, Risk Bounds, Optimal Allocations and Portfolios. Springer. Zbl1266.91001
- [34] Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer. Zbl0806.62009
- [35] Van Zwet, W.R. (1980). A strong law for linear functions of order statistics. Ann. Probab., 8, 986–990. [Crossref] Zbl0448.60025
- [36] Wang, S. and Dhaene, J. (1998). Comonotonicity, correlation order and premium principles. Insur. Math. Econ., 22(3), 235– 242. [Crossref] Zbl0909.62110
- [37] Wang, S., Young, V. R. and Panjer, H. H. (1997). Axiomatic characterization of insurance prices. Insur. Math. Econ., 21(2), 173–183. [Crossref] Zbl0959.62099
- [38] Wellner, J. A. (1977). A Glivenko-Cantelli theorem and strong laws of large numbers for functions of order statistics. Ann. Stat., 5(3), 473–480. [Crossref] Zbl0365.62045
- [39] Yaari, M. E. (1987). The dual theory of choice under risk. Econometrica, 55(1), 95–115. [Crossref] Zbl0616.90005
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.