Decomposition of Complete Multigraphs Into Stars and Cycles
Fairouz Beggas; Mohammed Haddad; Hamamache Kheddouci
Discussiones Mathematicae Graph Theory (2015)
- Volume: 35, Issue: 4, page 629-639
- ISSN: 2083-5892
Access Full Article
topAbstract
topHow to cite
topFairouz Beggas, Mohammed Haddad, and Hamamache Kheddouci. "Decomposition of Complete Multigraphs Into Stars and Cycles." Discussiones Mathematicae Graph Theory 35.4 (2015): 629-639. <http://eudml.org/doc/276006>.
@article{FairouzBeggas2015,
abstract = {Let k be a positive integer, Sk and Ck denote, respectively, a star and a cycle of k edges. λKn is the usual notation for the complete multigraph on n vertices and in which every edge is taken λ times. In this paper, we investigate necessary and sufficient conditions for the existence of the decomposition of λKn into edges disjoint of stars Sk’s and cycles Ck’s.},
author = {Fairouz Beggas, Mohammed Haddad, Hamamache Kheddouci},
journal = {Discussiones Mathematicae Graph Theory},
keywords = {graph decomposition; complete multigraph; stars; cycles},
language = {eng},
number = {4},
pages = {629-639},
title = {Decomposition of Complete Multigraphs Into Stars and Cycles},
url = {http://eudml.org/doc/276006},
volume = {35},
year = {2015},
}
TY - JOUR
AU - Fairouz Beggas
AU - Mohammed Haddad
AU - Hamamache Kheddouci
TI - Decomposition of Complete Multigraphs Into Stars and Cycles
JO - Discussiones Mathematicae Graph Theory
PY - 2015
VL - 35
IS - 4
SP - 629
EP - 639
AB - Let k be a positive integer, Sk and Ck denote, respectively, a star and a cycle of k edges. λKn is the usual notation for the complete multigraph on n vertices and in which every edge is taken λ times. In this paper, we investigate necessary and sufficient conditions for the existence of the decomposition of λKn into edges disjoint of stars Sk’s and cycles Ck’s.
LA - eng
KW - graph decomposition; complete multigraph; stars; cycles
UR - http://eudml.org/doc/276006
ER -
References
top- [1] A.A. Abueida and M. Daven, Multidesigns for graph-pairs of order 4 and 5, Graphs Combin. 19 (2003) 433-447. doi:10.1007/s00373-003-0530-3[Crossref] Zbl1032.05105
- [2] A.A. Abueida and M. Daven, Multidecompositions of the complete graph, Ars Com- bin. 72 (2004) 17-22.
- [3] A.A. Abueida and T. O’Neil, Multidecomposition of λKm into small cycles and claws, Bull. Inst. Combin. Appl. 49 (2007) 32-40. Zbl1112.05084
- [4] A.A. Abueida and C. Lian, On the decompositions of complete graphs into cycles and stars on the same number of edges, Discuss. Math. Graph Theory 34 (2014) 113-125. doi:10.7151/dmgt.1719[Crossref][WoS] Zbl1292.05211
- [5] B. Alspach and H. Gavlas, Cycle decompositions of Kn and Kn − I, J. Combin. Theory, Ser. B 81 (2001) 77-99. doi:10.1006/jctb.2000.1996[Crossref] Zbl1023.05112
- [6] D. Bryant, D. Horsley, B. Maenhaut and B.R. Smith, Cycle decompositions of com- plete multigraphs, J. Combin. Des. 19 (2011) 42-69. doi:10.1002/jcd.20263[Crossref] Zbl1205.05176
- [7] V. Chitra and A. Muthusamy, Symmetric Hamilton cycle decompositions of complete multigraphs, Discuss. Math. Graph Theory 33 (2013) 695-707. doi:10.7151/dmgt.1687[WoS][Crossref] Zbl1297.05138
- [8] S. Cichacz, Decomposition of complete bipartite digraphs and even complete bipartite multigraphs into closed trails, Discuss. Math. Graph Theory 27 (2007) 241-249. doi:10.7151/dmgt.1358[Crossref] Zbl1133.05075
- [9] H.-C. Lee and J.-J. Lin, Decomposition of the complete bipartite graph with a 1- factor removed into cycles and stars, Discrete Math. 313 (2013) 2354-2358. doi:10.1016/j.disc.2013.06.014[WoS] Zbl1281.05109
- [10] Z. Liang and J. Guo, Decomposition of complete multigraphs into crown graphs, J. Appl. Math. Comput. 32 (2010) 507-517. doi:10.1007/s12190-009-0267-0[Crossref] Zbl1227.05193
- [11] H.M. Priyadharsini and A. Muthusamy, (Gm,Hm)-multifactorization of λKm, J. Combin. Math. Combin. Comput. 69 (2009) 145-150. Zbl1195.05061
- [12] M. Šajna, Cycle decompositions III: Complete graphs and fixed length cycles, J. Combin. Des. 10 (2002) 27-78. doi:10.1002/jcd.1027[Crossref] Zbl1033.05078
- [13] T.-W. Shyu, Decompositions of complete graphs into paths and cycles, Ars Combin. 97 (2010) 257-270. Zbl1249.05313
- [14] T.-W. Shyu, Decomposition of complete graphs into paths of length three and trian- gles, Ars Combin. 107 (2012) 209-224.
- [15] T.-W. Shyu, Decomposition of complete graphs into cycles and stars, Graphs Com- bin. 29 (2013) 301-313. doi:10.1007/s00373-011-1105-3[Crossref] Zbl1263.05079
- [16] T.-W. Shyu, Decomposition of complete bipartite graphs into paths and stars with same number of edges, Discrete Math. 313 (2013) 865-871. doi:10.1016/j.disc.2012.12.020[Crossref]
- [17] D. Sotteau, Decomposition of Km,n (K(*) m,n) into cycles (circuits) of length 2k, J. Combin. Theory, Ser. B 30 (1981) 75-81. doi:10.1016/0095-8956(81)90093-9[Crossref]
- [18] M. Tarsi, Decomposition of complete multigraphs into stars, Discrete Math. 26 (1979) 273-278. doi:10.1016/0012-365X(79)90034-7[Crossref]
- [19] M. Tarsi, Decomposition of a complete multigraph into simple paths: Nonbalanced handcuffed designs, J. Combin. Theory, Ser. A 34 (1983) 60-70. doi:10.1016/0097-3165(83)90040-7[Crossref] Zbl0511.05024
- [20] R.M.Wilson, Decomposition of complete graphs into subgraphs isomorphic to a given graph, in: Proceedings of the 5th British Combinatorial Conference, Util. Math., Winnipeg, Congr. Numer. 15 (1976) 647-659.
- [21] S. Yamamoto, H. Ikeda, S. Shige-eda, K. Ushio and N. Hamada, On claw- decomposition of complete graphs and complete bigraphs, Hiroshima Math. J. 5 (1975) 33-42. Zbl0297.05143
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.