Approximation Spacesin Non-commutative Generalizations of M V -algebras

Jiří RACHŮNEK; Dana ŠALOUNOVÁ

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2015)

  • Volume: 54, Issue: 2, page 83-92
  • ISSN: 0231-9721

Abstract

top
Generalized MV-algebras (= GMV-algebras) are non-commutative generalizations of MV-algebras. They are an algebraic counterpart of the non-commutative Łukasiewicz infinite valued fuzzy logic. The paper investigates approximation spaces in GMV-algebras based on their normal ideals.

How to cite

top

RACHŮNEK, Jiří, and ŠALOUNOVÁ, Dana. "Approximation Spacesin Non-commutative Generalizations of $MV$-algebras." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 54.2 (2015): 83-92. <http://eudml.org/doc/276065>.

@article{RACHŮNEK2015,
abstract = {Generalized MV-algebras (= GMV-algebras) are non-commutative generalizations of MV-algebras. They are an algebraic counterpart of the non-commutative Łukasiewicz infinite valued fuzzy logic. The paper investigates approximation spaces in GMV-algebras based on their normal ideals.},
author = {RACHŮNEK, Jiří, ŠALOUNOVÁ, Dana},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {MV-algebra; GMV-algebra; rough set; approximation space; normal ideal; congruence},
language = {eng},
number = {2},
pages = {83-92},
publisher = {Palacký University Olomouc},
title = {Approximation Spacesin Non-commutative Generalizations of $MV$-algebras},
url = {http://eudml.org/doc/276065},
volume = {54},
year = {2015},
}

TY - JOUR
AU - RACHŮNEK, Jiří
AU - ŠALOUNOVÁ, Dana
TI - Approximation Spacesin Non-commutative Generalizations of $MV$-algebras
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2015
PB - Palacký University Olomouc
VL - 54
IS - 2
SP - 83
EP - 92
AB - Generalized MV-algebras (= GMV-algebras) are non-commutative generalizations of MV-algebras. They are an algebraic counterpart of the non-commutative Łukasiewicz infinite valued fuzzy logic. The paper investigates approximation spaces in GMV-algebras based on their normal ideals.
LA - eng
KW - MV-algebra; GMV-algebra; rough set; approximation space; normal ideal; congruence
UR - http://eudml.org/doc/276065
ER -

References

top
  1. Biswas, R., Nanda, S., Rough groups and rough subgroups, Bull. Polish Acad. Sci., Math. 42 (1994), 251–254. (1994) Zbl0834.68102MR1811855
  2. Burris, S., Sankapanavar, H. P., A Course in Universal Algebra, Springer-Verlag, New York, Heidelberg, Berlin, 1981. (1981) MR0648287
  3. Cataneo, G., Ciucci, D., 10.1007/978-3-540-27778-1_12, Lect. Notes Comput. Sci. 3135 (2004), 208–252. (2004) DOI10.1007/978-3-540-27778-1_12
  4. Cignoli, R. L. O., D’Ottaviano, I. M. L., Mundici, D., Algebraic Foundation of Many-valued Reasoning, Kluwer Acad. Publ., Dordrecht, Boston, London, 2000. (2000) MR1786097
  5. Ciucci, D., On the axioms of residuated structures independence dependencies and rough approximations, Fundam. Inform. 69 (2006), 359–387. (2006) Zbl1100.06011MR2350921
  6. Ciucci, D., A unifying abstract approach for rough models, In: C., Wang, et al: RSKT 2008, 5009, Springer-Verlag, Heidelberg, 2008, 371–378. (2008) 
  7. Davvaz, B., 10.1016/j.ins.2003.10.001, Inform. Sci. 164 (2004), 147–163. (2004) Zbl1072.16042MR2076574DOI10.1016/j.ins.2003.10.001
  8. Davvaz, B., 10.1016/j.ins.2005.10.001, Inform. Sci. 176 (2006), 2417–2437. (2006) Zbl1112.03049MR2247407DOI10.1016/j.ins.2005.10.001
  9. Estaji, A. A., Khodaii, S., Bahrami, S., 10.1016/j.ins.2011.04.043, Inform. Sci. 181 (2011), 3981–3994. (2011) Zbl1242.06008MR2818650DOI10.1016/j.ins.2011.04.043
  10. Georgescu, G., Iorgulescu, A., Pseudo MV-algebras, Multi. Val. Logic 6 (2001), 95–135. (2001) Zbl1014.06008MR1817439
  11. Kondo, M., M., Algebraic approach to generalized rough sets, In: D., Slezak, et al: RSFDGrC 2005, LNAI, 5009, Springer-Verlag, Berlin, Heidelberg, 2005, 132–140. (2005) Zbl1134.68509MR2167787
  12. Kuroki, N., 10.1016/S0020-0255(96)00274-5, Inform. Sci. 100 (1997), 139–163. (1997) Zbl0916.20046MR1446627DOI10.1016/S0020-0255(96)00274-5
  13. Leoreanu-Fotea, V., Davvaz, B., 10.1016/j.ins.2008.06.019, Inform. Sci. 178 (2008), 4114–4124. (2008) Zbl1187.20071MR2454652DOI10.1016/j.ins.2008.06.019
  14. Leuştean, I., 10.1007/s00153-005-0297-8, Arch. Math. Logic 45 (2006), 191–213. (2006) Zbl1096.03020MR2209743DOI10.1007/s00153-005-0297-8
  15. Li, T. J., Leung, Y., Zhang, W. X., 10.1016/j.ijar.2008.01.006, Int. J. Approx. Reason. 48 (2008), 836–856. (2008) Zbl1186.68464MR2437954DOI10.1016/j.ijar.2008.01.006
  16. Li, X., Liu, S., Matroidal approaches to rough sets via closure operators, Inter. J. Approx. Reason. 53 (2012), 513–527. (2012) Zbl1246.68233MR2903082
  17. Liu, G. L., Zhu, W., 10.1016/j.ins.2008.06.021, Inform. Sci. 178 (2008), 4105–4113. (2008) Zbl1162.68667MR2454651DOI10.1016/j.ins.2008.06.021
  18. Pawlak, Z., Rough sets, Inter. J. Inf. Comput. Sci. 11 (1982), 341–356. (1982) Zbl0525.04005MR0703291
  19. Pawlak, Z., Rough Sets: Theoretical Aspects of Reasoning about Data, System Theory, Knowledge Engineering and Problem Solving 9, Kluwer Academic Publ., Dordrecht, 1991. (1991) Zbl0758.68054
  20. Pawlak, Z., Skowron, A., 10.1016/j.ins.2006.06.003, Inform. Sci. 177 (2007), 3–27. (2007) Zbl1142.68549MR2272732DOI10.1016/j.ins.2006.06.003
  21. Pawlak, Z., Skowron, A., 10.1016/j.ins.2006.06.006, Inform. Sci. 177 (2007), 28–40. (2007) Zbl1142.68550MR2272733DOI10.1016/j.ins.2006.06.006
  22. Pawlak, Z., Skowron, A., 10.1016/j.ins.2006.06.007, Inform. Sci. 177 (2007), 41–73. (2007) Zbl1142.68551MR2272734DOI10.1016/j.ins.2006.06.007
  23. Pei, D., 10.1016/j.ins.2007.01.020, Inform. Sci. 177 (2007), 4230–4239. (2007) Zbl1126.68076MR2346788DOI10.1016/j.ins.2007.01.020
  24. Rachůnek, J., 10.1023/A:1021766309509, Czechoslovak Math. J. 52 (2002), 255–273. (2002) Zbl1012.06012MR1905434DOI10.1023/A:1021766309509
  25. Radzikowska, A. M., Kerre, E. E., Fuzzy rough sets based on residuated lattices, In: Transactions on Rough Sets II, Lecture Notes in Computer Sciences, 3135, Springer-Verlag, Berlin, Heidelberg, 2004, 278–296. (2004) Zbl1109.68118
  26. Rasouli, S., Davvaz, B., 10.1016/j.ins.2009.11.008, Inform. Sci. 180 (2010), 737–747. (2010) Zbl1194.06009MR2574551DOI10.1016/j.ins.2009.11.008
  27. She, Y. H., Wang, G. J., 10.1016/j.camwa.2009.03.100, Comput. Math. Appl. 58 (2009), 189–201. (2009) MR2535981DOI10.1016/j.camwa.2009.03.100
  28. Xiao, Q. M., Zhang, Z. L., 10.1016/j.ins.2004.12.010, Inform. Sci. 176 (2006), 725–733. (2006) Zbl1088.20041MR2201320DOI10.1016/j.ins.2004.12.010
  29. Yang, L., Xu, L., 10.1016/j.ijar.2009.10.001, Int. J. Approx. Reason. 51 (2009), 151–161. (2009) Zbl1200.06004MR2565213DOI10.1016/j.ijar.2009.10.001
  30. Zhu, P., 10.1016/j.ijar.2010.10.005, Int. J. Approx. Reason. 52 (2011), 461–472. (2011) Zbl1229.03047MR2771972DOI10.1016/j.ijar.2010.10.005
  31. Zhu, W., 10.1016/j.ins.2008.09.015, Inform. Sci. 179 (2009), 210–225. (2009) MR2473013DOI10.1016/j.ins.2008.09.015

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.