A non-commutative generalization of M V -algebras

Jiří Rachůnek

Czechoslovak Mathematical Journal (2002)

  • Volume: 52, Issue: 2, page 255-273
  • ISSN: 0011-4642

How to cite

top

Rachůnek, Jiří. "A non-commutative generalization of $MV$-algebras." Czechoslovak Mathematical Journal 52.2 (2002): 255-273. <http://eudml.org/doc/30697>.

@article{Rachůnek2002,
author = {Rachůnek, Jiří},
journal = {Czechoslovak Mathematical Journal},
keywords = {MV-algebra; generalized MV-algebra; dually residuated lattice ordered monoid},
language = {eng},
number = {2},
pages = {255-273},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A non-commutative generalization of $MV$-algebras},
url = {http://eudml.org/doc/30697},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Rachůnek, Jiří
TI - A non-commutative generalization of $MV$-algebras
JO - Czechoslovak Mathematical Journal
PY - 2002
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 52
IS - 2
SP - 255
EP - 273
LA - eng
KW - MV-algebra; generalized MV-algebra; dually residuated lattice ordered monoid
UR - http://eudml.org/doc/30697
ER -

References

top
  1. Foundations of the Theory of Quasigroups and Loops, Nauka, Moscow, 1967. (Russian) (1967) MR0218483
  2. Groupes et Anneaux Réticulés, SpringerVerlag, Berlin-Heidelberg-New York, 1977. (1977) MR0552653
  3. A Course in Universal Algebra, Springer-Verlag, Berlin-Heidelberg-New York, 1981. (1981) MR0648287
  4. 10.1090/S0002-9947-1958-0094302-9, Trans. Amer. Math. Soc. 88 (1958), 467–490. (1958) Zbl0084.00704MR0094302DOI10.1090/S0002-9947-1958-0094302-9
  5. A new proof of the completeness of the Lukasiewicz axioms, Trans. Amer. Math. Soc. 93 (1959), 74–80. (1959) Zbl0093.01104MR0122718
  6. Free lattice-ordered abelian groups and varieties of M V -algebras, Proc. IX. Latin. Amer. Symp. Math. Log., Part 1, Not. Log. Mat. 38 (1993), 113–118. (1993) Zbl0827.06012MR1332526
  7. Lattice-Ordered Groups (Advances and Techniques), A. M. W. Glass and W. Charles Holland (eds.), Kluwer Acad. Publ., Dordrecht-Boston-London, 1989. (1989) Zbl0705.06001MR1036072
  8. M V -algebras, ideals and semisimplicity, Math. Japon. 34 (1989), 563–583. (1989) Zbl0677.03041MR1005257
  9. The Theory of Lattice Ordered Groups, Kluwer Acad. Publ., Dordrecht-Boston-London, 1994. (1994) MR1369091
  10. A general theory of dually residuated lattice ordered monoids, Thesis, Palacký University Olomouc, 1996. (1996) 
  11. Interpretation of A F C * -algebras in Łukasiewicz sentential calculus, J. Funct. Anal. 65 (1986), 15–63. (1986) Zbl0597.46059MR0819173
  12. M V -algebras are categorically equivalent to bounded commutative B C K -algebras, Math. Japon. 31 (1986), 889–894. (1986) Zbl0633.03066MR0870978
  13. 10.1023/A:1022801907138, Czechoslovak Math. J. 48(123) (1998), 365–372. (1998) MR1624268DOI10.1023/A:1022801907138
  14. M V -algebras are categorically equivalent to a class of D R l 1 ( i ) -semigroups, Math. Bohem. 123 (1998), 437–441. (1998) MR1667115
  15. Dually residuated lattice ordered semigroups, Math. Ann. 159 (1965), 105–114. (1965) Zbl0138.02104MR0183797
  16. 10.1007/BF01364335, Math. Ann. 160 (1965), 64–71. (1965) MR0191851DOI10.1007/BF01364335
  17. 10.1007/BF01361218, Math. Ann. 167 (1966), 71–74. (1966) Zbl0158.02601MR0200364DOI10.1007/BF01361218

Citations in EuDML Documents

top
  1. Magdalena Wojciechowska-Rysiawa, IF-filters of pseudo-BL-algebras
  2. Grzegorz Dymek, On fuzzy ideals of pseudo MV-algebras
  3. Andrzej Walendziak, On maximal ideals of pseudo-BCK-algebras
  4. Jiří Rachůnek, Connections between ideals of non-commutative generalizations of M V -algebras and ideals of their underlying lattices
  5. Jiří Rachůnek, Radicals in non-commutative generalizations of MV-algebras
  6. Anatolij Dvurečenskij, States on unital partially-ordered groups
  7. P. Emanovský, Jiří Rachůnek, A non commutative generalization of -autonomous lattices
  8. Jiří RACHŮNEK, Dana ŠALOUNOVÁ, Approximation Spacesin Non-commutative Generalizations of M V -algebras
  9. Grzegorz Dymek, Noetherian and Artinian pseudo MV-algebras
  10. Ivan Chajda, Miroslav Kolařík, Remarks on pseudo MV-algebras

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.