-angulated quotient categories induced by mutation pairs
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 4, page 953-968
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLin, Zengqiang. "$n$-angulated quotient categories induced by mutation pairs." Czechoslovak Mathematical Journal 65.4 (2015): 953-968. <http://eudml.org/doc/276088>.
@article{Lin2015,
abstract = {Geiss, Keller and Oppermann (2013) introduced the notion of $n$-angulated category, which is a “higher dimensional” analogue of triangulated category, and showed that certain $(n-2)$-cluster tilting subcategories of triangulated categories give rise to $n$-angulated categories. We define mutation pairs in $n$-angulated categories and prove that given such a mutation pair, the corresponding quotient category carries a natural $n$-angulated structure. This result generalizes a theorem of Iyama-Yoshino (2008) for triangulated categories.},
author = {Lin, Zengqiang},
journal = {Czechoslovak Mathematical Journal},
keywords = {$n$-angulated category; quotient category; mutation pair},
language = {eng},
number = {4},
pages = {953-968},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {$n$-angulated quotient categories induced by mutation pairs},
url = {http://eudml.org/doc/276088},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Lin, Zengqiang
TI - $n$-angulated quotient categories induced by mutation pairs
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 953
EP - 968
AB - Geiss, Keller and Oppermann (2013) introduced the notion of $n$-angulated category, which is a “higher dimensional” analogue of triangulated category, and showed that certain $(n-2)$-cluster tilting subcategories of triangulated categories give rise to $n$-angulated categories. We define mutation pairs in $n$-angulated categories and prove that given such a mutation pair, the corresponding quotient category carries a natural $n$-angulated structure. This result generalizes a theorem of Iyama-Yoshino (2008) for triangulated categories.
LA - eng
KW - $n$-angulated category; quotient category; mutation pair
UR - http://eudml.org/doc/276088
ER -
References
top- Bergh, P. A., Thaule, M., 10.1016/j.jpaa.2013.06.007, J. Pure Appl. Algebra 218 (2014), 354-366. (2014) Zbl1291.18015MR3120636DOI10.1016/j.jpaa.2013.06.007
- Bergh, P. A., Jasso, G., Thaule, M., Higher -angulations from local rings, (to appear) in J. Lond. Math. Soc. arXiv:1311.2089v2[math.CT] (2013). (2013) MR3073923
- Bergh, P. A., Thaule, M., 10.2140/agt.2013.13.2405, Algebr. Geom. Topol. 13 (2013), 2405-2428. (2013) Zbl1272.18008MR3073923DOI10.2140/agt.2013.13.2405
- Geiss, C., Keller, B., Oppermann, S., -angulated categories, J. Reine Angew. Math. 675 (2013), 101-120. (2013) Zbl1271.18013MR3021448
- Happel, D., Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series 119 Cambridge University Press, Cambridge (1988). (1988) Zbl0635.16017MR0935124
- Iyama, O., Yoshino, Y., 10.1007/s00222-007-0096-4, Invent. Math. 172 (2008), 117-168. (2008) Zbl1140.18007MR2385669DOI10.1007/s00222-007-0096-4
- Jasso, G., -abelian and -exact categories, arXiv:1405.7805v2[math.CT] (2014). (2014) MR3519980
- J{ørgensen, P., 10.1093/imrn/rnv265, Int. Math. Res. Not. (2015), doi:10.1093/imrn/rnv265. (2015) MR3544623DOI10.1093/imrn/rnv265
- Puppe, D., On the formal structure of stable homotopy theory, Colloquium on Algebraic Topology Lectures Matematisk Institut, Aarhus Universitet, Aarhus (1962), 65-71. (1962) Zbl0139.41106
- Verdier, J.-L., Catégories dérivées. Quelques résultats (État O), Semin. Geom. Algebr. Bois-Marie, SGA 4 1/2, Lect. Notes Math. 569 Springer, New York French (1977). (1977) Zbl0407.18008
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.