Higher-dimensional Auslander-Reiten sequences

Jiangsha Li; Jing He

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 3, page 771-786
  • ISSN: 0011-4642

Abstract

top
Zhou and Zhu have shown that if 𝒞 is an ( n + 2 ) -angulated category and 𝒳 is a cluster tilting subcategory of 𝒞 , then the quotient category 𝒞 / 𝒳 is an n -abelian category. We show that if 𝒞 has Auslander-Reiten ( n + 2 ) -angles, then 𝒞 / 𝒳 has Auslander-Reiten n -exact sequences.

How to cite

top

Li, Jiangsha, and He, Jing. "Higher-dimensional Auslander-Reiten sequences." Czechoslovak Mathematical Journal 74.3 (2024): 771-786. <http://eudml.org/doc/299301>.

@article{Li2024,
abstract = {Zhou and Zhu have shown that if $\mathcal \{C\}$ is an $(n+2)$-angulated category and $\mathcal \{X\}$ is a cluster tilting subcategory of $\mathcal \{C\}$, then the quotient category $\mathcal \{C\}/\mathcal \{X\}$ is an $n$-abelian category. We show that if $\mathcal \{C\}$ has Auslander-Reiten $(n+2)$-angles, then $\mathcal \{C\}/\mathcal \{X\}$ has Auslander-Reiten $n$-exact sequences.},
author = {Li, Jiangsha, He, Jing},
journal = {Czechoslovak Mathematical Journal},
keywords = {$(n+2)$-angulated category; cluster tilting subcategory; $n$-abelian category; Auslander-Reiten $(n+2)$-angle; Auslander-Reiten $n$-exact sequence},
language = {eng},
number = {3},
pages = {771-786},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Higher-dimensional Auslander-Reiten sequences},
url = {http://eudml.org/doc/299301},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Li, Jiangsha
AU - He, Jing
TI - Higher-dimensional Auslander-Reiten sequences
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 771
EP - 786
AB - Zhou and Zhu have shown that if $\mathcal {C}$ is an $(n+2)$-angulated category and $\mathcal {X}$ is a cluster tilting subcategory of $\mathcal {C}$, then the quotient category $\mathcal {C}/\mathcal {X}$ is an $n$-abelian category. We show that if $\mathcal {C}$ has Auslander-Reiten $(n+2)$-angles, then $\mathcal {C}/\mathcal {X}$ has Auslander-Reiten $n$-exact sequences.
LA - eng
KW - $(n+2)$-angulated category; cluster tilting subcategory; $n$-abelian category; Auslander-Reiten $(n+2)$-angle; Auslander-Reiten $n$-exact sequence
UR - http://eudml.org/doc/299301
ER -

References

top
  1. Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
  2. Auslander, M., Reiten, I., 10.1080/00927877508822046, Commun. Algebra 3 (1975), 239-294. (1975) Zbl0331.16027MR0379599DOI10.1080/00927877508822046
  3. Auslander, M., Reiten, I., 10.1080/00927877708822180, Commun. Algebra 5 (1977), 443-518. (1977) Zbl0396.16007MR0439881DOI10.1080/00927877708822180
  4. Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
  5. Fedele, F., 10.1016/j.jpaa.2018.11.017, J. Pure Appl. Algebra 223 (2019), 3554-3580. (2019) Zbl1411.16017MR3926227DOI10.1016/j.jpaa.2018.11.017
  6. Fedele, F., 10.1017/S0013091519000312, Proc. Edinb. Math. Soc., II. Ser. 63 (2020), 342-373. (2020) Zbl1468.16028MR4089379DOI10.1017/S0013091519000312
  7. Geiss, C., Keller, B., Oppermann, S., 10.1515/CRELLE.2011.177, J. Reine Angew. Math. 675 (2013), 101-120. (2013) Zbl1271.18013MR3021448DOI10.1515/CRELLE.2011.177
  8. Happel, D., 10.1017/CBO9780511629228, London Mathematical Society Lecture Note Series 119. Cambridge University Press, Cambridge (1988). (1988) Zbl0635.16017MR0935124DOI10.1017/CBO9780511629228
  9. He, J., Zhang, J. Hu. D., Zhou, P., 10.4310/ARKIV.2022.v60.n2.a8, Ark. Mat. 60 (2022), 365-385. (2022) Zbl1509.18006MR4500371DOI10.4310/ARKIV.2022.v60.n2.a8
  10. Iyama, O., Oppermann, S., 10.1090/S0002-9947-2011-05312-2, Trans. Am. Math. Soc. 363 (2011), 6575-6614. (2011) Zbl1264.16015MR2833569DOI10.1090/S0002-9947-2011-05312-2
  11. Iyama, O., Yoshino, Y., 10.1007/s00222-007-0096-4, Invent. Math. 172 (2008), 117-168. (2008) Zbl1140.18007MR2385669DOI10.1007/s00222-007-0096-4
  12. Jasso, G., 10.1007/s00209-016-1619-8, Math. Z. 283 (2016), 703-759. (2016) Zbl1356.18005MR3519980DOI10.1007/s00209-016-1619-8
  13. Jiao, P., 10.1142/S0219498818502274, J. Algebra Appl. 17 (2018), Article ID 1850227, 14 pages. (2018) Zbl1407.16014MR3895199DOI10.1142/S0219498818502274
  14. rgensen, P. Jø, 10.1007/S00014-001-0795-4, Comment. Math. Helv. 79 (2004), 160-182. (2004) Zbl1053.55010MR2031704DOI10.1007/S00014-001-0795-4
  15. rgensen, P. Jø, 10.1017/is008007021jkt056, J. -Theory 3 (2009), 583-601. (2009) Zbl1201.16021MR2507732DOI10.1017/is008007021jkt056
  16. Lin, Z., 10.1007/s10587-015-0220-3, Czech. Math. J. 65 (2015), 953-968. (2015) Zbl1363.18009MR3441328DOI10.1007/s10587-015-0220-3
  17. Lin, Z., 10.1080/00927872.2016.1175591, Commun. Algebra 45 (2017), 828-840. (2017) Zbl1371.18010MR3562541DOI10.1080/00927872.2016.1175591
  18. Liu, S., Niu, H., 10.1016/j.jpaa.2022.107092, J. Pure Appl. Algebra 226 (2022), Article ID 107092, 31 pages. (2022) Zbl1511.16004MR4403638DOI10.1016/j.jpaa.2022.107092
  19. Oppermann, S., Thomas, H., 10.4171/JEMS/345, J. Eur. Math. Soc. (JEMS) 14 (2012), 1679-1737. (2012) Zbl1254.05197MR2984586DOI10.4171/JEMS/345
  20. Shah, A., 10.1016/j.jpaa.2019.04.017, J. Pure Appl. Algebra 224 (2020), 98-124. (2020) Zbl1423.18033MR3986413DOI10.1016/j.jpaa.2019.04.017
  21. Zhou, P., 10.11650/tjm/201102, Taiwanese. J. Math. 25 (2021), 233-249. (2021) Zbl1482.18008MR4255209DOI10.11650/tjm/201102
  22. Zhou, P., 10.1017/S0017089521000343, Glasg. Math. J. 64 (2022), 527-547. (2022) Zbl1494.18010MR4462377DOI10.1017/S0017089521000343
  23. Zhou, P., Zhu, B., 10.1016/j.jalgebra.2019.03.007, J. Algebra 527 (2019), 264-279. (2019) Zbl1470.18020MR3924434DOI10.1016/j.jalgebra.2019.03.007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.