Higher-dimensional Auslander-Reiten sequences
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 3, page 771-786
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Jiangsha, and He, Jing. "Higher-dimensional Auslander-Reiten sequences." Czechoslovak Mathematical Journal 74.3 (2024): 771-786. <http://eudml.org/doc/299301>.
@article{Li2024,
abstract = {Zhou and Zhu have shown that if $\mathcal \{C\}$ is an $(n+2)$-angulated category and $\mathcal \{X\}$ is a cluster tilting subcategory of $\mathcal \{C\}$, then the quotient category $\mathcal \{C\}/\mathcal \{X\}$ is an $n$-abelian category. We show that if $\mathcal \{C\}$ has Auslander-Reiten $(n+2)$-angles, then $\mathcal \{C\}/\mathcal \{X\}$ has Auslander-Reiten $n$-exact sequences.},
author = {Li, Jiangsha, He, Jing},
journal = {Czechoslovak Mathematical Journal},
keywords = {$(n+2)$-angulated category; cluster tilting subcategory; $n$-abelian category; Auslander-Reiten $(n+2)$-angle; Auslander-Reiten $n$-exact sequence},
language = {eng},
number = {3},
pages = {771-786},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Higher-dimensional Auslander-Reiten sequences},
url = {http://eudml.org/doc/299301},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Li, Jiangsha
AU - He, Jing
TI - Higher-dimensional Auslander-Reiten sequences
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 3
SP - 771
EP - 786
AB - Zhou and Zhu have shown that if $\mathcal {C}$ is an $(n+2)$-angulated category and $\mathcal {X}$ is a cluster tilting subcategory of $\mathcal {C}$, then the quotient category $\mathcal {C}/\mathcal {X}$ is an $n$-abelian category. We show that if $\mathcal {C}$ has Auslander-Reiten $(n+2)$-angles, then $\mathcal {C}/\mathcal {X}$ has Auslander-Reiten $n$-exact sequences.
LA - eng
KW - $(n+2)$-angulated category; cluster tilting subcategory; $n$-abelian category; Auslander-Reiten $(n+2)$-angle; Auslander-Reiten $n$-exact sequence
UR - http://eudml.org/doc/299301
ER -
References
top- Assem, I., Simson, D., Skowroński, A., 10.1017/CBO9780511614309, London Mathematical Society Student Texts 65. Cambridge University Press, Cambridge (2006). (2006) Zbl1092.16001MR2197389DOI10.1017/CBO9780511614309
- Auslander, M., Reiten, I., 10.1080/00927877508822046, Commun. Algebra 3 (1975), 239-294. (1975) Zbl0331.16027MR0379599DOI10.1080/00927877508822046
- Auslander, M., Reiten, I., 10.1080/00927877708822180, Commun. Algebra 5 (1977), 443-518. (1977) Zbl0396.16007MR0439881DOI10.1080/00927877708822180
- Auslander, M., Reiten, I., Smalø, S. O., 10.1017/CBO9780511623608, Cambridge Studies in Advanced Mathematics 36. Cambridge University Press, Cambridge (1995). (1995) Zbl0834.16001MR1314422DOI10.1017/CBO9780511623608
- Fedele, F., 10.1016/j.jpaa.2018.11.017, J. Pure Appl. Algebra 223 (2019), 3554-3580. (2019) Zbl1411.16017MR3926227DOI10.1016/j.jpaa.2018.11.017
- Fedele, F., 10.1017/S0013091519000312, Proc. Edinb. Math. Soc., II. Ser. 63 (2020), 342-373. (2020) Zbl1468.16028MR4089379DOI10.1017/S0013091519000312
- Geiss, C., Keller, B., Oppermann, S., 10.1515/CRELLE.2011.177, J. Reine Angew. Math. 675 (2013), 101-120. (2013) Zbl1271.18013MR3021448DOI10.1515/CRELLE.2011.177
- Happel, D., 10.1017/CBO9780511629228, London Mathematical Society Lecture Note Series 119. Cambridge University Press, Cambridge (1988). (1988) Zbl0635.16017MR0935124DOI10.1017/CBO9780511629228
- He, J., Zhang, J. Hu. D., Zhou, P., 10.4310/ARKIV.2022.v60.n2.a8, Ark. Mat. 60 (2022), 365-385. (2022) Zbl1509.18006MR4500371DOI10.4310/ARKIV.2022.v60.n2.a8
- Iyama, O., Oppermann, S., 10.1090/S0002-9947-2011-05312-2, Trans. Am. Math. Soc. 363 (2011), 6575-6614. (2011) Zbl1264.16015MR2833569DOI10.1090/S0002-9947-2011-05312-2
- Iyama, O., Yoshino, Y., 10.1007/s00222-007-0096-4, Invent. Math. 172 (2008), 117-168. (2008) Zbl1140.18007MR2385669DOI10.1007/s00222-007-0096-4
- Jasso, G., 10.1007/s00209-016-1619-8, Math. Z. 283 (2016), 703-759. (2016) Zbl1356.18005MR3519980DOI10.1007/s00209-016-1619-8
- Jiao, P., 10.1142/S0219498818502274, J. Algebra Appl. 17 (2018), Article ID 1850227, 14 pages. (2018) Zbl1407.16014MR3895199DOI10.1142/S0219498818502274
- rgensen, P. Jø, 10.1007/S00014-001-0795-4, Comment. Math. Helv. 79 (2004), 160-182. (2004) Zbl1053.55010MR2031704DOI10.1007/S00014-001-0795-4
- rgensen, P. Jø, 10.1017/is008007021jkt056, J. -Theory 3 (2009), 583-601. (2009) Zbl1201.16021MR2507732DOI10.1017/is008007021jkt056
- Lin, Z., 10.1007/s10587-015-0220-3, Czech. Math. J. 65 (2015), 953-968. (2015) Zbl1363.18009MR3441328DOI10.1007/s10587-015-0220-3
- Lin, Z., 10.1080/00927872.2016.1175591, Commun. Algebra 45 (2017), 828-840. (2017) Zbl1371.18010MR3562541DOI10.1080/00927872.2016.1175591
- Liu, S., Niu, H., 10.1016/j.jpaa.2022.107092, J. Pure Appl. Algebra 226 (2022), Article ID 107092, 31 pages. (2022) Zbl1511.16004MR4403638DOI10.1016/j.jpaa.2022.107092
- Oppermann, S., Thomas, H., 10.4171/JEMS/345, J. Eur. Math. Soc. (JEMS) 14 (2012), 1679-1737. (2012) Zbl1254.05197MR2984586DOI10.4171/JEMS/345
- Shah, A., 10.1016/j.jpaa.2019.04.017, J. Pure Appl. Algebra 224 (2020), 98-124. (2020) Zbl1423.18033MR3986413DOI10.1016/j.jpaa.2019.04.017
- Zhou, P., 10.11650/tjm/201102, Taiwanese. J. Math. 25 (2021), 233-249. (2021) Zbl1482.18008MR4255209DOI10.11650/tjm/201102
- Zhou, P., 10.1017/S0017089521000343, Glasg. Math. J. 64 (2022), 527-547. (2022) Zbl1494.18010MR4462377DOI10.1017/S0017089521000343
- Zhou, P., Zhu, B., 10.1016/j.jalgebra.2019.03.007, J. Algebra 527 (2019), 264-279. (2019) Zbl1470.18020MR3924434DOI10.1016/j.jalgebra.2019.03.007
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.