Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 4, page 1117-1136
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Ji, and Zheng, Jia-Shan. "Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source." Czechoslovak Mathematical Journal 65.4 (2015): 1117-1136. <http://eudml.org/doc/276089>.
@article{Liu2015,
abstract = {We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. By establishing proper a priori estimates we prove that, with both the diffusion function and the chemotaxis sensitivity function being positive, the corresponding initial boundary value problem admits a unique global classical solution which is uniformly bounded. The result of this paper is a generalization of that of Cao (2014).},
author = {Liu, Ji, Zheng, Jia-Shan},
journal = {Czechoslovak Mathematical Journal},
keywords = {boundedness; chemotaxis; nonlinear logistic source},
language = {eng},
number = {4},
pages = {1117-1136},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source},
url = {http://eudml.org/doc/276089},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Liu, Ji
AU - Zheng, Jia-Shan
TI - Boundedness in a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 1117
EP - 1136
AB - We study a quasilinear parabolic-parabolic chemotaxis system with nonlinear logistic source, under homogeneous Neumann boundary conditions in a smooth bounded domain. By establishing proper a priori estimates we prove that, with both the diffusion function and the chemotaxis sensitivity function being positive, the corresponding initial boundary value problem admits a unique global classical solution which is uniformly bounded. The result of this paper is a generalization of that of Cao (2014).
LA - eng
KW - boundedness; chemotaxis; nonlinear logistic source
UR - http://eudml.org/doc/276089
ER -
References
top- Cao, X., 10.1016/j.jmaa.2013.10.061, J. Math. Anal. Appl. 412 (2014), 181-188. (2014) MR3145792DOI10.1016/j.jmaa.2013.10.061
- Cieślak, T., Stinner, C., 10.1007/s10440-013-9832-5, Acta Appl. Math. 129 (2014), 135-146. (2014) Zbl1295.35123MR3152080DOI10.1007/s10440-013-9832-5
- Cieślak, T., Stinner, C., 10.1016/j.jde.2012.01.045, J. Differ. Equations 252 (2012), 5832-5851. (2012) Zbl1252.35087MR2902137DOI10.1016/j.jde.2012.01.045
- Herrero, M. A., Velázquez, J. J. L., A blow-up mechanism for a chemotaxis model, Ann. Sc. Norm. Super. Pisa Cl. Sci. 4. 24 (1997), 633-683. (1997) Zbl0904.35037MR1627338
- Horstmann, D., Wang, G., 10.1017/S0956792501004363, Eur. J. Appl. Math. 12 (2001), 159-177. (2001) Zbl1017.92006MR1931303DOI10.1017/S0956792501004363
- Horstmann, D., Winkler, M., 10.1016/j.jde.2004.10.022, J. Differ. Equations 215 (2005), 52-107. (2005) Zbl1085.35065MR2146345DOI10.1016/j.jde.2004.10.022
- Keller, E. F., Segel, L. A., 10.1016/0022-5193(70)90092-5, J. Theor. Biol. 26 (1970), 399-415. (1970) Zbl1170.92306DOI10.1016/0022-5193(70)90092-5
- Nagai, T., Senba, T., Yoshida, K., Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkc. Ekvacioj. Ser. Int. 40 (1997), 411-433. (1997) Zbl0901.35104MR1610709
- Osaki, K., Yagi, A., Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkc. Ekvacioj. Ser. Int. 44 (2001), 441-469. (2001) Zbl1145.37337MR1893940
- Painter, K. J., Hillen, T., Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q. 10 (2002), 501-543. (2002) Zbl1057.92013MR2052525
- Tao, Y., Winkler, M., 10.1016/j.jde.2011.08.019, J. Differ. Equations 252 (2012), 692-715. (2012) MR2852223DOI10.1016/j.jde.2011.08.019
- Winkler, M., 10.1016/j.matpur.2013.01.020, J. Math. Pures Appl. 100 (2013), 748-767. (2013) Zbl1326.35053MR3115832DOI10.1016/j.matpur.2013.01.020
- Winkler, M., 10.1016/j.jde.2010.02.008, J. Differ. Equations 248 (2010), 2889-2905. (2010) Zbl1190.92004MR2644137DOI10.1016/j.jde.2010.02.008
- Winkler, M., 10.1080/03605300903473426, Commun. Partial Differ. Equations 35 (2010), 1516-1537. (2010) Zbl1290.35139MR2754053DOI10.1080/03605300903473426
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.