Some new sums related to D. H. Lehmer problem
Czechoslovak Mathematical Journal (2015)
- Volume: 65, Issue: 4, page 915-922
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topZhang, Han, and Zhang, Wenpeng. "Some new sums related to D. H. Lehmer problem." Czechoslovak Mathematical Journal 65.4 (2015): 915-922. <http://eudml.org/doc/276093>.
@article{Zhang2015,
abstract = {About Lehmer’s number, many people have studied its various properties, and obtained a series of interesting results. In this paper, we consider a generalized Lehmer problem: Let $p$ be a prime, and let $N(k; p)$ denote the number of all $1 \le a_i \le p - 1 $ such that $a_1a_2 \cdots a_k \equiv 1 ~\@mod \;p$ and $2 \mid a_i + \bar\{a\}_i + 1,$$i = 1, 2, \cdots , k$. The main purpose of this paper is using the analytic method, the estimate for character sums and trigonometric sums to study the asymptotic properties of the counting function $N(k; p),$ and give an interesting asymptotic formula for it.},
author = {Zhang, Han, Zhang, Wenpeng},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lehmer number; analytic method; trigonometric sums; asymptotic formula},
language = {eng},
number = {4},
pages = {915-922},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Some new sums related to D. H. Lehmer problem},
url = {http://eudml.org/doc/276093},
volume = {65},
year = {2015},
}
TY - JOUR
AU - Zhang, Han
AU - Zhang, Wenpeng
TI - Some new sums related to D. H. Lehmer problem
JO - Czechoslovak Mathematical Journal
PY - 2015
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 65
IS - 4
SP - 915
EP - 922
AB - About Lehmer’s number, many people have studied its various properties, and obtained a series of interesting results. In this paper, we consider a generalized Lehmer problem: Let $p$ be a prime, and let $N(k; p)$ denote the number of all $1 \le a_i \le p - 1 $ such that $a_1a_2 \cdots a_k \equiv 1 ~\@mod \;p$ and $2 \mid a_i + \bar{a}_i + 1,$$i = 1, 2, \cdots , k$. The main purpose of this paper is using the analytic method, the estimate for character sums and trigonometric sums to study the asymptotic properties of the counting function $N(k; p),$ and give an interesting asymptotic formula for it.
LA - eng
KW - Lehmer number; analytic method; trigonometric sums; asymptotic formula
UR - http://eudml.org/doc/276093
ER -
References
top- Apostol, T. M., Introduction to Analytic Number Theory, Undergraduate Texts in Mathematics Springer, New York (1976). (1976) Zbl0335.10001MR0434929
- Chowla, S., On Kloosterman's sum, Norske Vid. Selsk. Forhdl. 40 (1967), 70-72. (1967) Zbl0157.09001MR0228452
- Guy, R. K., Unsolved Problems in Number Theory. Unsolved Problems in Intuitive Mathematics, I, Problem Books in Mathematics Springer, New York (1994). (1994) MR1299330
- Maly{š}ev, A. V., A generalization of Kloosterman sums and their estimates, Vestnik Leningrad. Univ. 15 (1960), 59-75. (1960) MR0125084
- Pan, C., Pan, C., Goldbach Conjecture, Science Press, Beijing (1992). (1992) Zbl0849.11080MR1287852
- Weil, A., Sur les courbes algébriques et les variétés qui s'en déduisent, Actualités Sci. Ind. 1041, deuxieme partie, §IV Hermann et Cie., Paris French (1948), Publ. Inst. Math. Univ. Strasbourg, 7 (1945). (1948) Zbl0036.16001
- Zhang, W., 10.1017/S0017089511000498, Glasg. Math. J. 54 (2012), 155-162. (2012) Zbl1303.11095MR2862393DOI10.1017/S0017089511000498
- Zhang, W., A problem of D. H. Lehmer and its mean square value formula, Japan J. Math., New Ser. 29 (2003), 109-116. (2003) Zbl1127.11338MR1986866
- Zhang, W., A problem of D. H. Lehmer and its generalization. II, Compos. Math. 91 (1994), 47-56. (1994) Zbl0798.11001MR1273925
- Zhang, W., On a problem of D. H. Lehmer and its generalization, Compos. Math. 86 (1993), 307-316. (1993) Zbl0783.11003MR1219630
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.