A problem of D. H. Lehmer and its generalization (II)
Compositio Mathematica (1994)
- Volume: 91, Issue: 1, page 47-56
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- [1] Richard K.Guy, Unsolved Problems in Number Theory, Springer-Verlag, 1981, pp. 139-140. Zbl0805.11001MR656313
- [2] Zhang Wenpeng, On a problem of D. H. Lehmer and its generalization, Compositio Mathematica. 86 (1993) 307-316. Zbl0783.11002MR1219630
- [3] Funakura, Takeo, On Kronecker's limit formula for Dirichlet series with periodic coefficients, Acta Arith., 55 (1990), No. 1, pp. 59-73. Zbl0654.10039MR1056115
- [4] T. Estermann, On Kloostermann's sum, Mathematica, 8 (1961), pp. 83-86. Zbl0114.26302MR126420
- [5] Apostol, Tom M, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976. Zbl0335.10001MR434929
- [6] J.-M. Deshouillers and H. Iwaniec, Kloosterman Sums and Fourier coefficients of Cusp Forms, Inventiones Mathematicae, 70 (1982) pp. 219-288. Zbl0502.10021MR684172
Citations in EuDML Documents
top- Wenpeng Zhang, On the difference between a D. H. Lehmer number and its inverse modulo q
- Han Zhang, Wenpeng Zhang, Some new sums related to D. H. Lehmer problem
- Alexandru Zaharescu, The distribution of the values of a rational function modulo a big prime
- Rong Ma, Yulong Zhang, On a kind of generalized Lehmer problem