A new LMI-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems

Saleh Mobayen; Fairouz Tchier

Kybernetika (2015)

  • Volume: 51, Issue: 6, page 1035-1048
  • ISSN: 0023-5954

Abstract

top
This paper presents a novel sliding mode controller for a class of uncertain nonlinear systems. Based on Lyapunov stability theorem and linear matrix inequality technique, a sufficient condition is derived to guarantee the global asymptotical stability of the error dynamics and a linear sliding surface is existed depending on state errors. A new reaching control law is designed to satisfy the presence of the sliding mode around the linear surface in the finite time, and its parameters are obtained in the form of LMI. This proposed method is utilized to achieve a controller capable of drawing the states onto the switching surface and sustain the switching motion. The advantage of the suggested technique is that the control scheme is independent of the order of systems model and then, it is fairly simple. Therefore, there is no complexity in the utilization of this scheme. Simulation results are provided to illustrate the effectiveness of the proposed scheme.

How to cite

top

Mobayen, Saleh, and Tchier, Fairouz. "A new LMI-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems." Kybernetika 51.6 (2015): 1035-1048. <http://eudml.org/doc/276110>.

@article{Mobayen2015,
abstract = {This paper presents a novel sliding mode controller for a class of uncertain nonlinear systems. Based on Lyapunov stability theorem and linear matrix inequality technique, a sufficient condition is derived to guarantee the global asymptotical stability of the error dynamics and a linear sliding surface is existed depending on state errors. A new reaching control law is designed to satisfy the presence of the sliding mode around the linear surface in the finite time, and its parameters are obtained in the form of LMI. This proposed method is utilized to achieve a controller capable of drawing the states onto the switching surface and sustain the switching motion. The advantage of the suggested technique is that the control scheme is independent of the order of systems model and then, it is fairly simple. Therefore, there is no complexity in the utilization of this scheme. Simulation results are provided to illustrate the effectiveness of the proposed scheme.},
author = {Mobayen, Saleh, Tchier, Fairouz},
journal = {Kybernetika},
keywords = {robust tracking; finite-time control; sliding mode control; nonlinear system; LMI; uncertainties},
language = {eng},
number = {6},
pages = {1035-1048},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A new LMI-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems},
url = {http://eudml.org/doc/276110},
volume = {51},
year = {2015},
}

TY - JOUR
AU - Mobayen, Saleh
AU - Tchier, Fairouz
TI - A new LMI-based robust finite-time sliding mode control strategy for a class of uncertain nonlinear systems
JO - Kybernetika
PY - 2015
PB - Institute of Information Theory and Automation AS CR
VL - 51
IS - 6
SP - 1035
EP - 1048
AB - This paper presents a novel sliding mode controller for a class of uncertain nonlinear systems. Based on Lyapunov stability theorem and linear matrix inequality technique, a sufficient condition is derived to guarantee the global asymptotical stability of the error dynamics and a linear sliding surface is existed depending on state errors. A new reaching control law is designed to satisfy the presence of the sliding mode around the linear surface in the finite time, and its parameters are obtained in the form of LMI. This proposed method is utilized to achieve a controller capable of drawing the states onto the switching surface and sustain the switching motion. The advantage of the suggested technique is that the control scheme is independent of the order of systems model and then, it is fairly simple. Therefore, there is no complexity in the utilization of this scheme. Simulation results are provided to illustrate the effectiveness of the proposed scheme.
LA - eng
KW - robust tracking; finite-time control; sliding mode control; nonlinear system; LMI; uncertainties
UR - http://eudml.org/doc/276110
ER -

References

top
  1. Bandyopadhyay, B., Deepak, F., Kim, K. S., 10.1007/978-3-642-03448-0, Springer-Verlag, Berlin/Heidelberg 2009. MR2548194DOI10.1007/978-3-642-03448-0
  2. Chesi, G., 10.1109/tac.2010.2046926, IEEE Trans. Automat. Control 55 (2010), 2500-2510. MR2721892DOI10.1109/tac.2010.2046926
  3. Fridman, E., Shaked, U., 10.1016/s0024-3795(01)00563-8, Linear Algebra Appl. 351 (2002), 271-302. Zbl1006.93021MR1917482DOI10.1016/s0024-3795(01)00563-8
  4. García, A. E. G., Azhmyakov, V., Basin, M. V., 10.14736/kyb-2014-01-005, Kybernetika 50 (2014), 5-18. Zbl1302.93222MR3195001DOI10.14736/kyb-2014-01-005
  5. Gouaisbaut, F., Dambrine, M., Richard, J. P., 10.1016/s0167-6911(01)00199-2, Sys. Control Lett. 46 (2002), 219-230. Zbl0994.93004MR2010239DOI10.1016/s0167-6911(01)00199-2
  6. Hassanzadeh, I., Mobayen, S., Harifi, A., 10.3844/ajassp.2008.1322.1328, Am. J. Appl. Sci. 5 (2008), 1322-1328. DOI10.3844/ajassp.2008.1322.1328
  7. Ignaciuk, P., 10.1109/vss.2014.6881113, In: Proc. 13th International Workshop on Variable Structure Systems (VSS) 2014, pp. 1-6. DOI10.1109/vss.2014.6881113
  8. Jiang, X., Han, Q. L., 10.1109/tfuzz.2008.917293, IEEE Trans. Fuzzy Syst. 16 (2008), 1050-1060. DOI10.1109/tfuzz.2008.917293
  9. Kim, K. S., Park, Y., 10.1137/s0363012901388476, Siam J. Control Optim. 43 (2004), 670-684. Zbl1101.93024MR2086178DOI10.1137/s0363012901388476
  10. Mobayen, S., 10.1002/cplx.21569, Complexity 21 (2015), 1, 340-348. DOI10.1002/cplx.21569
  11. Mobayen, S., 10.1002/cplx.21545, Complexity 21 (2015), 1, 94-98. DOI10.1002/cplx.21545
  12. Mobayen, S., 10.1007/s11071-014-1362-9, Nonlinear Dyn. 77 (2014), 1047-1054. Zbl1314.93023DOI10.1007/s11071-014-1362-9
  13. Mobayen, S., 10.1002/cplx.21600, Complexity 21 (2015), 2, 239-244. DOI10.1002/cplx.21600
  14. Mobayen, S., 10.1002/cplx.21624, Published online (2014). Complexity. DOI10.1002/cplx.21624
  15. Mobayen, S., 10.1007/s11071-014-1724-3, Nonlinear Dyn. 79 (2015), 1075-1084. MR3302754DOI10.1007/s11071-014-1724-3
  16. Mobayen, S., Majd, V. J., Sojoodi, M., 10.1016/j.matcom.2012.09.006, Math. Comp. Simul. 85 (2012), 1-10. Zbl1258.93043MR2999847DOI10.1016/j.matcom.2012.09.006
  17. Mobayen, S., Yazdanpanah, M. J., Majd, V. J., 10.1109/acc.2011.5991040, In: Proc. American Control Conference (ACC) 2011, pp. 1720-1725. DOI10.1109/acc.2011.5991040
  18. Moulay, E., Peruquetti, W., 10.1016/j.jmaa.2005.11.046, J. Math. Anal. Appl. 323 (2006), 1430-1443. MR2260193DOI10.1016/j.jmaa.2005.11.046
  19. Niu, Y., Ho, D. W. C., Wang, X., 10.1109/tac.2008.929376, IEEE Trans. Automat. Control 53 (2008), 1695-1701. MR2446384DOI10.1109/tac.2008.929376
  20. Pujol, G., Rodellar, J., Rossell, J. M., Pozo, F., 10.1049/iet-cta:20050364, IET Control Theory Appl. 1 (2007), 779-785. DOI10.1049/iet-cta:20050364
  21. Rabiee, A., Mohammadi-Ivatloo, B., Moradi-Dalvand, M., 10.1109/tpwrs.2013.2288028, IEEE Trans. Power Syst. 29 (2014), 982-983. DOI10.1109/tpwrs.2013.2288028
  22. Rabiee, A., Soroudi, A., Mohammadi-Ivatloo, B., Parniani, M., 10.1109/tpwrs.2014.2316018, IEEE Trans. Power Syst. 29 (2014), 2965-2973. DOI10.1109/tpwrs.2014.2316018
  23. Soroudi, A., Rabiee, A., 10.1049/iet-gtd.2012.0735, IET Gener. Transm. Dis. 7 (2013), 1011-1026. DOI10.1049/iet-gtd.2012.0735
  24. Soroudi, A., Mohammadi-Ivatloo, B., Rabiee, A., 10.1007/978-981-4585-30-9_16, In: Large Scale Renewable Power Generation, Springer, Singapore 2014, pp. 413-438. DOI10.1007/978-981-4585-30-9_16
  25. Tai, T. L., Lu, Y. S., 10.1243/09596518jsce197, J. Sys. Control Engrg. 220 (2006), 573-584. DOI10.1243/09596518jsce197
  26. Tan, H., Shu, S., Lin, F., 10.1080/00207170802187239, Int. J. Control 82 (2009), 525-540. Zbl1168.49030MR2503276DOI10.1080/00207170802187239
  27. Valiloo, S., Khosrowjerdi, M. J., Salari, M., 10.1115/1.4025553, J. Dyn. Sys. Meas. Control 136 (2013), 011016. DOI10.1115/1.4025553
  28. Wu, H., 10.1109/tac.2009.2017960, IEEE Trans. Automat. Control 54 (2009), 1407-1412. MR2532639DOI10.1109/tac.2009.2017960
  29. Zhang, B. L., Han, Q. L., Zhang, X. M., Yu, X., 10.1109/tcst.2013.2293401, IEEE Trans. Control Syst. Technol. 22 (2014), 1769-1783. DOI10.1109/tcst.2013.2293401
  30. Zhang, H., Liu, X., Wang, J., Karimi, H. R., 10.1007/s00170-014-5910-8, Int. J. Adv. Manuf. Tech. 73 (2014), 1095-1104. DOI10.1007/s00170-014-5910-8
  31. Zhang, B. L., Ma, L., Han, Q.L., 10.1016/j.nonrwa.2012.05.010, Nonlinear Anal. Real World Appl. 14 (2013), 163-178. Zbl1254.93062MR2969826DOI10.1016/j.nonrwa.2012.05.010
  32. Zadeh, I. H., Mobayen, S., 10.3923/jas.2008.2907.2912, J. Appl. Sci. 16 (2008), 2907-2912. DOI10.3923/jas.2008.2907.2912
  33. Zhang, J., Xia, Y., 10.1109/tie.2009.2033485, IEEE Trans. Ind. Elec. 57 (2010), 2161-2170. DOI10.1109/tie.2009.2033485
  34. Zheng, B. C., Yang, G. H., 10.1016/j.isatra.2013.06.002, ISA Trans. 52 (2013), 577-582. MR3085982DOI10.1016/j.isatra.2013.06.002

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.