Optimal control processes associated with a class of discontinuous control systems: Applications to sliding mode dynamics

Arturo Enrique Gil García; Vadim Azhmyakov; Michael V. Basin

Kybernetika (2014)

  • Volume: 50, Issue: 1, page 5-18
  • ISSN: 0023-5954

Abstract

top
This paper presents a theoretical approach to optimal control problems (OCPs) governed by a class of control systems with discontinuous right-hand sides. A possible application of the framework developed in this paper is constituted by the conventional sliding mode dynamic processes. The general theory of constrained OCPs is used as an analytic background for designing numerically tractable schemes and computational methods for their solutions. The proposed analytic method guarantees consistency of the resulting approximations related to the original infinite-dimensional optimization problem and leads to specific implementable algorithms.

How to cite

top

Gil García, Arturo Enrique, Azhmyakov, Vadim, and Basin, Michael V.. "Optimal control processes associated with a class of discontinuous control systems: Applications to sliding mode dynamics." Kybernetika 50.1 (2014): 5-18. <http://eudml.org/doc/261134>.

@article{GilGarcía2014,
abstract = {This paper presents a theoretical approach to optimal control problems (OCPs) governed by a class of control systems with discontinuous right-hand sides. A possible application of the framework developed in this paper is constituted by the conventional sliding mode dynamic processes. The general theory of constrained OCPs is used as an analytic background for designing numerically tractable schemes and computational methods for their solutions. The proposed analytic method guarantees consistency of the resulting approximations related to the original infinite-dimensional optimization problem and leads to specific implementable algorithms.},
author = {Gil García, Arturo Enrique, Azhmyakov, Vadim, Basin, Michael V.},
journal = {Kybernetika},
keywords = {sliding mode; nonlinear systems; absolute continuous approximations; sliding mode; nonlinear systems; absolute continuous approximations},
language = {eng},
number = {1},
pages = {5-18},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Optimal control processes associated with a class of discontinuous control systems: Applications to sliding mode dynamics},
url = {http://eudml.org/doc/261134},
volume = {50},
year = {2014},
}

TY - JOUR
AU - Gil García, Arturo Enrique
AU - Azhmyakov, Vadim
AU - Basin, Michael V.
TI - Optimal control processes associated with a class of discontinuous control systems: Applications to sliding mode dynamics
JO - Kybernetika
PY - 2014
PB - Institute of Information Theory and Automation AS CR
VL - 50
IS - 1
SP - 5
EP - 18
AB - This paper presents a theoretical approach to optimal control problems (OCPs) governed by a class of control systems with discontinuous right-hand sides. A possible application of the framework developed in this paper is constituted by the conventional sliding mode dynamic processes. The general theory of constrained OCPs is used as an analytic background for designing numerically tractable schemes and computational methods for their solutions. The proposed analytic method guarantees consistency of the resulting approximations related to the original infinite-dimensional optimization problem and leads to specific implementable algorithms.
LA - eng
KW - sliding mode; nonlinear systems; absolute continuous approximations; sliding mode; nonlinear systems; absolute continuous approximations
UR - http://eudml.org/doc/261134
ER -

References

top
  1. Aliprantis, C. D., Border, K. C., Infinite Dimensional Analysis., Springer, Berlin 1999. Zbl1156.46001MR1717083
  2. Atkinson, K., Han, W., Theoretical Numerical Analysis., Springer, New York 2005. Zbl1181.47078MR2153422
  3. Gómez-Gutiérrez, D., Čelikovský, S., Ramírez-Trevino, A., Ruiz-León, J., Gennaro, S. Di, Robust regulation via sliding modes of a rotary inverted pendulum., In: Preprints 3rd IFAC Symposium on Robust Control Design, ÚTIA AV ČR, Praha 2000. 
  4. Attia, S. A., Azhmyakov, V., Raisch, J., On an optimization problem for a class of impulsive hybrid systems., In: Discrete Event Dynamical Systems, 2009. Zbl1197.49038MR2609675
  5. Azhmyakov, V., Raisch, J., 10.1109/TAC.2008.919848, IEEE Trans. Automat. Control 53 (2008), 993-998. MR2419445DOI10.1109/TAC.2008.919848
  6. Azhmyakov, V., Boltyanski, V. G., Poznyak, A., Optimal control of impulsive hybrid systems., Nonlinear Anal.: Hybrid Systems 2 (2008), 1089-1097. Zbl1163.49038MR2478392
  7. Azhmyakov, V., Galvan-Guerra, R., Egerstedt, M., Hybrid LQ-optimization using dynamic programming., In: Proc. 2009 American Control Conference, St. Louis 2009, pp. 3617-3623. 
  8. Azhmyakov, V., Egerstedt, M., Fridman, L., Poznyak, A., Continuity properties of nonlinear affine control systems: applications to hybrid and sliding mode dynamics., In: Proc. 2009 IFAC Conference on Analysis and Design of Hybrid Systems, Zaragoza 2009, pp. 204-209. 
  9. Azhmyakov, V., Boltyanski, V. G., Poznyak., A., The dynamic programming approach to multi-model robust optimization., Nonlinear Anal.: Theory, Methods Applications 72 (2010), 1110-1119. MR2579373
  10. Azhmyakov, V., Optimal control of sliding mode processes: A general approach., In: Proc. 11th International Workshop on Variable Structure Systems, Mexico City 2010, pp. 504-509. 
  11. Basin, V. Azhmyakov M., García, A. E. Gil, A general approach to optimal control processes associated with a class of discontinuous control systems: Applications to the sliding mode dynamics., In: Proc. 2012 IEEE International Conference on Control Applications, Dubrovnik 2012, pp. 1154-1159. 
  12. Bartolini, G., Fridman, L., Pisano, A., (eds.), E. Usai, Modern Sliding Mode Control Theory., Lecture Notes in Control and Inform. Sci. 375, Springer, Berlin 2008. Zbl1140.93005MR2435347
  13. Berkovitz, L. D., Optimal Control Theory., Springer, New York 1974. Zbl1257.49001MR0372707
  14. Boiko, I., Discontinuous Control Systems Frequency-Domain Analysis and Design., Birkhauser, New York 2009. Zbl1165.93002MR2683127
  15. Boiko, I., Fridman, L., Pisano, A., Usai, E., 10.1109/TAC.2008.2008361, IEEE Trans. Automat. Control 54 (2009), 399-403. MR2491973DOI10.1109/TAC.2008.2008361
  16. Čelikovský, S., Numerical algorithm for nonsmooth stabilization of triangular form systems., Kybernetika 32 (1996), 261-274. Zbl0873.93074MR1438219
  17. Branicky, M. S., Borkar, V. S., Mitter, S. K., 10.1109/9.654885, IEEE Trans. Automat. Control 43 (1998), 31-45. MR1604250DOI10.1109/9.654885
  18. Caines, P., Egerstedt, M., Malhame, R., Schoellig, A., 10.1007/978-3-540-71493-4_54, Lecture Notes in Computer Sci. 4416, Springer, Berlin 2007, pp. 656-659. Zbl1221.49054DOI10.1007/978-3-540-71493-4_54
  19. Deimling, K., Multivalued Differential Equations., de Gruyter, Berlin 1992. Zbl0820.34009MR1189795
  20. Edwards, R. E., Functional Analysis., Dover, New York 1995. Zbl0354.06008MR1320261
  21. Egerstedt, M., Wardi, Y., Axelsson, H., 10.1109/TAC.2005.861711, IEEE Trans. Automat. Control 51 (2006), 110-115. MR2192797DOI10.1109/TAC.2005.861711
  22. Fattorini, H. O., Infinite-Dimensional Optimization and Control Theory., Cambridge University Press, Cambridge 1999. Zbl1200.49001MR1669395
  23. Ferrara, A., Rubbagoti, M., 10.1109/TAC.2008.2010992, IEEE Trans. Automat. Control 54 (2009), 1082-1087. MR2518127DOI10.1109/TAC.2008.2010992
  24. Filippov, A. F., Differential Equations with Discontinuous Right-Hand Sides., Kluwer, Dordrecht 1988. Zbl1098.34006
  25. Gallardo-Hernández, A. G., Fridman, L., Islas-Andrade, S., Shtessel, Y., Quasi-continuous high order sliding modes controllers applied to glucose-insulin regulatory system models., In: Proc. 47th IEEE Conference on Decision and Control, Cancun 2008, pp. 2208-2213. 
  26. Gamkrelidze, R., Principles of Optimal Control Theory., Plenum Press, London 1978. Zbl0401.49001MR0686793
  27. Gómez-Gutiérrez, D., Čelikovský, S., Ramírez-Trevino, A., Ruiz-León, J., Gennaro, S. Di, Sliding mode observer for switched linear systems., In: Proc. 2011 IEEE Conference on Automation Science and Engineering, IEEE Conference on Automation Science and Engineering, Trieste 2011. 
  28. Haddad, W. M., Chellaboina, V., Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach., Princeton University Press, New Jersey 2008. Zbl1142.34001MR2381711
  29. Hale, J., Ordinary Differential Equations., J. Wiley, New York 1969. Zbl0433.34003MR0419901
  30. Himmelberg, C. J., Measurable relations., Fund. Math. 87 (1975), 53-72. Zbl0465.28002MR0367142
  31. Isidori, A., Nonlinear Control Systems., Springer, New York 1989. Zbl0931.93005MR1015932
  32. Jahn, J., Introduction to the Theory of Nonlinear Optimization., Springer, Berlin 2007. Zbl1115.49001MR2292173
  33. Khalil, H. K., Nonlinear Systems., Prentice Hall, New Jersey 2001. Zbl1194.93083
  34. Levant, A., 10.1109/9.948475, IEEE Trans. Automat. Control 46 (2001), 1447-1451. MR1853689DOI10.1109/9.948475
  35. Liberzon, D., Switching in Systems and Control., Birkhäuser, Boston 2003. Zbl1036.93001MR1987806
  36. Orlov, Y., Discontinuous Systems: Lyapunov Analysis and Robust Synthesis under Uncertainty Conditions., Springer, New York 2008. Zbl1180.37004MR2731468
  37. Paden, B. E., Sastry, S. S., 10.1109/TCS.1987.1086038, IEEE Trans. Circuits Systems 34 (1987), 73-82. MR0871547DOI10.1109/TCS.1987.1086038
  38. Poznyak, A., Advanced Mathematical Tools for Automatic Control Engineers., Elsevier, Amsterdam 2008. 
  39. Boltyanski, V. G., Poznyak, A., The Robust Maximum Principle., Birkhäuser, Boston 2011. Zbl1239.49002MR3024943
  40. Pytlak, R., Numerical Methods for Optimal Control Problems with State Constraints., Springer-Verlag, Berlin 1999. Zbl0928.49002MR1713434
  41. Rockafellar, R. T., 10.1137/0314056, SIAM J. Control Optim. 14 (1976), 877-898. Zbl0358.90053MR0410483DOI10.1137/0314056
  42. Ramos-Velasco, L. E., Ruiz-León, J. J., Čelikovský, S., Rotary inverted pendulum: Trajectory tracking via nonlinear control techniques., Kybernetika 38 (2002), 217-232. Zbl1265.93138MR1916453
  43. Roubíček, T., 10.1080/01630569508816671, Numer. Funct. Anal. Optim. 16 (1995), 1233-1253. Zbl0854.65051MR1374974DOI10.1080/01630569508816671
  44. Shaikh, M. S., Caines, P. E., 10.1109/TAC.2007.904451, IEEE Trans. Automat. Control 52 (2007), 1587-1603. MR2352436DOI10.1109/TAC.2007.904451
  45. Utkin, V., Sliding Modes in Control and Optimization., Springer, Berlin 1992. Zbl0748.93044MR1295845

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.