On European option pricing under partial information
Meng Wu; Jue Lu; Nan-jing Huang
Applications of Mathematics (2016)
- Volume: 61, Issue: 1, page 61-77
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topWu, Meng, Lu, Jue, and Huang, Nan-jing. "On European option pricing under partial information." Applications of Mathematics 61.1 (2016): 61-77. <http://eudml.org/doc/276114>.
@article{Wu2016,
abstract = {We consider a European option pricing problem under a partial information market, i.e., only the security's price can be observed, the rate of return and the noise source in the market cannot be observed. To make the problem tractable, we focus on gap option which is a generalized form of the classical European option. By using the stochastic analysis and filtering technique, we derive a Black-Scholes formula for gap option pricing with dividends under partial information. Finally, we apply filtering technique to solve a utility maximization problem under partial information through transforming the problem under partial information into the classical problem.},
author = {Wu, Meng, Lu, Jue, Huang, Nan-jing},
journal = {Applications of Mathematics},
keywords = {option pricing; European option; partial information; backward stochastic differential equation; option pricing; European option; partial information; backward stochastic differential equation},
language = {eng},
number = {1},
pages = {61-77},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On European option pricing under partial information},
url = {http://eudml.org/doc/276114},
volume = {61},
year = {2016},
}
TY - JOUR
AU - Wu, Meng
AU - Lu, Jue
AU - Huang, Nan-jing
TI - On European option pricing under partial information
JO - Applications of Mathematics
PY - 2016
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 61
IS - 1
SP - 61
EP - 77
AB - We consider a European option pricing problem under a partial information market, i.e., only the security's price can be observed, the rate of return and the noise source in the market cannot be observed. To make the problem tractable, we focus on gap option which is a generalized form of the classical European option. By using the stochastic analysis and filtering technique, we derive a Black-Scholes formula for gap option pricing with dividends under partial information. Finally, we apply filtering technique to solve a utility maximization problem under partial information through transforming the problem under partial information into the classical problem.
LA - eng
KW - option pricing; European option; partial information; backward stochastic differential equation; option pricing; European option; partial information; backward stochastic differential equation
UR - http://eudml.org/doc/276114
ER -
References
top- Ballestra, L. V., Pacelli, G., 10.1080/09603107.2011.579058, Applied Financial Economics 21 (2011), 1479-1487. (2011) DOI10.1080/09603107.2011.579058
- Black, F., Scholes, M., 10.1086/260062, J. Political Econ. 81 (1973), 637-654. (1973) Zbl1092.91524DOI10.1086/260062
- Cox, J., Notes on option pricing I: Constant elasticity of variance diffusions, Working paper, Stanford University (1975) {https://www.researchgate.net/publication/239062860_Notes_on_Option_Pricing_I_Constant_Elasticity_of_Variance_Diffusions}.
- Cox, J. C., Ross, S. A., 10.1016/0304-405X(76)90023-4, Journal of Financial Economics 3 (1976), 145-166. (1976) DOI10.1016/0304-405X(76)90023-4
- Duffie, D., Security Markets. Stochastic Models, Economic Theory, Econometrics, and Mathematical Economics Academic Press, Boston (1988). (1988) Zbl0661.90001MR0955269
- Karoui, N. El, Peng, S., Quenez, M. C., 10.1111/1467-9965.00022, Math. Finance 7 (1997), 1-71. (1997) Zbl0884.90035MR1434407DOI10.1111/1467-9965.00022
- Emanuel, D. C., MacBeth, J. D., 10.2307/2330906, J. Financial Quant. Anal. 17 (1982), 533-554. (1982) DOI10.2307/2330906
- Karatzas, I., Shreve, S. E., 10.1007/978-1-4684-0302-2_2, Graduate Texts in Mathematics 113 Springer, New York (1988). (1988) Zbl0638.60065MR0917065DOI10.1007/978-1-4684-0302-2_2
- Karatzas, I., Shreve, S. E., Methods of Mathematical Finance, Applications of Mathematics 39 Springer, Berlin (1998). (1998) Zbl0941.91032MR1640352
- Lakner, P., 10.1016/0304-4149(94)00073-3, Stochastic Processes Appl. 56 (1995), 247-273. (1995) Zbl0834.90022MR1325222DOI10.1016/0304-4149(94)00073-3
- Lakner, P., 10.1016/S0304-4149(98)00032-5, Stochastic Processes Appl. 76 (1998), 77-97. (1998) Zbl0934.91021MR1637952DOI10.1016/S0304-4149(98)00032-5
- Liptser, R. S., Shiryayev, A. N., Statistics of Random Processes. I. General Theory, Applications of Mathematics 5 Springer, New York (1977). (1977) Zbl0364.60004MR0474486
- Liptser, R. S., Shiryayev, A. N., Statistics of Random Processes. II. Applications, Applications of Mathematics 6 Springer, New York (1978). (1978) Zbl0369.60001MR0488267
- Ma, J., Yong, J., Forward-Backward Stochastic Differential Equations and Their Applications, Lecture Notes in Mathematics 1702 Springer, Berlin (1999). (1999) Zbl0927.60004MR1704232
- Merton, R. C., 10.2307/3003143, Bell J. Econ. Manag. Sci. 4 (1973), 141-183. (1973) MR0496534DOI10.2307/3003143
- Merton, R. C., Continuous-Time Finance, Blackwell, Cambridge (1999). (1999) Zbl1019.91502
- Øksendal, B., Stochastic Differential Equations. An Introduction with Applications, Universitext Springer, Berlin (1998). (1998) Zbl0897.60056
- Wu, Z., Wang, G. C., A Black-Scholes formula for option pricing with dividends and optimal investment problems under partial information, J. Syst. Sci. Math. Sci. 27 Chinese (2007), 676-683. (2007) Zbl1150.91397MR2375534
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.