On the relations between the central factor-module and the derived submodule in modules over group rings

Leonid A. Kurdachenko; Igor Ya. Subbotin; Vasyl A. Chupordia

Commentationes Mathematicae Universitatis Carolinae (2015)

  • Volume: 56, Issue: 4, page 433-445
  • ISSN: 0010-2628

Abstract

top
A modular analogue of the well-known group theoretical result about finiteness of the derived subgroup in a group with a finite factor by its center has been obtained.

How to cite

top

Kurdachenko, Leonid A., Subbotin, Igor Ya., and Chupordia, Vasyl A.. "On the relations between the central factor-module and the derived submodule in modules over group rings." Commentationes Mathematicae Universitatis Carolinae 56.4 (2015): 433-445. <http://eudml.org/doc/276171>.

@article{Kurdachenko2015,
abstract = {A modular analogue of the well-known group theoretical result about finiteness of the derived subgroup in a group with a finite factor by its center has been obtained.},
author = {Kurdachenko, Leonid A., Subbotin, Igor Ya., Chupordia, Vasyl A.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {modules; group rings; modules over group rings; generalized soluble groups; modules of finite rank; an integral domain; a scalar ring; Schur's theorem; Baer's theorem},
language = {eng},
number = {4},
pages = {433-445},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {On the relations between the central factor-module and the derived submodule in modules over group rings},
url = {http://eudml.org/doc/276171},
volume = {56},
year = {2015},
}

TY - JOUR
AU - Kurdachenko, Leonid A.
AU - Subbotin, Igor Ya.
AU - Chupordia, Vasyl A.
TI - On the relations between the central factor-module and the derived submodule in modules over group rings
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2015
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 56
IS - 4
SP - 433
EP - 445
AB - A modular analogue of the well-known group theoretical result about finiteness of the derived subgroup in a group with a finite factor by its center has been obtained.
LA - eng
KW - modules; group rings; modules over group rings; generalized soluble groups; modules of finite rank; an integral domain; a scalar ring; Schur's theorem; Baer's theorem
UR - http://eudml.org/doc/276171
ER -

References

top
  1. Baer R., 10.1090/S0002-9947-1945-0015107-1, Trans. Amer. Math. Soc. 58 (1945), 348–389. MR0015107DOI10.1090/S0002-9947-1945-0015107-1
  2. Baer R., 10.1007/BF01343558, Math. Ann. 124 (1952), 161–177. Zbl0046.02202MR0045720DOI10.1007/BF01343558
  3. Ballester-Bolinches A., Camp-Mora S., Kurdachenko L.A., Otal J., 10.1016/j.jalgebra.2013.06.035, J. Algebra 393 (2013), 1–15. Zbl1294.20045MR3090052DOI10.1016/j.jalgebra.2013.06.035
  4. Dixon M.R., Kurdachenko L.A., Otal J., Linear analogues of theorems of Schur, Baer and Hall, Int. J. Group Theory 2 (2013), no. 1, 79–89. Zbl1306.20055MR3033535
  5. Hall P., Nilpotent groups, Notes of lectures given at the Canadian Math. Congress, University of Alberta, August 1957, pp. 12–30. Zbl0211.34201
  6. Kargapolov M.I., Merzlyakov Yu.I., Fundamentals of the theory of groups, Nauka, Moscow, 1982. MR0677282
  7. Kurdachenko L.A., Otal J., The rank of the factor-group modulo the hypercenter and the rank of the some hypocenter of a group, Cent. Eur. J. Math. 11 (2013), no. 10, 1732–1741. Zbl1316.20039MR3080231
  8. Kurdachenko L.A., Otal J., Subbotin I.Ya., Artinian Modules over Group Rings, Frontiers in Mathematics, Birkhäuser, Basel, 2007, 248 p. Zbl1110.16001MR2270897
  9. Kurosh A.G., The Theory of Groups, Nauka, Moscow, 1967. Zbl0111.02502MR0249495
  10. Lucchini A., 10.1007/BF01195209, Archiv. Math. (Basel) 53 (2013), 313–31. Zbl0679.20028MR1015993DOI10.1007/BF01195209
  11. Neumann B.H., Groups with finite classes of conjugate elements, Proc. London Math. Soc. 1 (1951), 178–187. Zbl0043.02401MR0043779
  12. Robinson D.J.S., Finiteness Conditions and Generalized Soluble Groups, Part 1. Springer, Berlin, 1972, xv+210 pp. Zbl0243.20033MR0332989
  13. Saeedi F., Veisi B., 10.1080/03081087.2013.809871, Linear Multilinear Algebra 62 (2014), no. 9, 1139–1145. Zbl1307.17007MR3250935DOI10.1080/03081087.2013.809871
  14. Schur I., Über die Darstellungen der endlichen Gruppen durch gebrochene lineare substitutionen, J. reine angew. Math., 127 (1904), 20–50. MR1580631
  15. Stewart I.N., Verbal and marginal properties of non-associative algebras in the spirit of infinite group theory, Proc. London Math. Soc. 28 (1974), 129–140. MR0338095
  16. Wehrfritz B.A.F., Infinite Linear Groups, Springer, Berlin, 1973. Zbl0261.20038MR0335656
  17. Wiegold J., 10.1007/BF01112166, Math. Z. 89 (1965), 345–347. Zbl0134.03002MR0179262DOI10.1007/BF01112166

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.