On the equivalence of control systems on Lie groups
Rory Biggs; Claudiu C. Remsing
Communications in Mathematics (2015)
- Volume: 23, Issue: 2, page 119-129
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topBiggs, Rory, and Remsing, Claudiu C.. "On the equivalence of control systems on Lie groups." Communications in Mathematics 23.2 (2015): 119-129. <http://eudml.org/doc/276176>.
@article{Biggs2015,
abstract = {We consider state space equivalence and feedback equivalence in the context of (full-rank) left-invariant control systems on Lie groups. We prove that two systems are state space equivalent (resp.~detached feedback equivalent) if and only if there exists a Lie group isomorphism relating their parametrization maps (resp. traces). Local analogues of these results, in terms of Lie algebra isomorphisms, are also found. Three illustrative examples are provided.},
author = {Biggs, Rory, Remsing, Claudiu C.},
journal = {Communications in Mathematics},
keywords = {left-invariant control system; state space equivalence; detached feedback equivalence; left-invariant control system; state space equivalence; detached feedback equivalence},
language = {eng},
number = {2},
pages = {119-129},
publisher = {University of Ostrava},
title = {On the equivalence of control systems on Lie groups},
url = {http://eudml.org/doc/276176},
volume = {23},
year = {2015},
}
TY - JOUR
AU - Biggs, Rory
AU - Remsing, Claudiu C.
TI - On the equivalence of control systems on Lie groups
JO - Communications in Mathematics
PY - 2015
PB - University of Ostrava
VL - 23
IS - 2
SP - 119
EP - 129
AB - We consider state space equivalence and feedback equivalence in the context of (full-rank) left-invariant control systems on Lie groups. We prove that two systems are state space equivalent (resp.~detached feedback equivalent) if and only if there exists a Lie group isomorphism relating their parametrization maps (resp. traces). Local analogues of these results, in terms of Lie algebra isomorphisms, are also found. Three illustrative examples are provided.
LA - eng
KW - left-invariant control system; state space equivalence; detached feedback equivalence; left-invariant control system; state space equivalence; detached feedback equivalence
UR - http://eudml.org/doc/276176
ER -
References
top- Adams, R.M., Biggs, R., Remsing, C.C., Equivalence of control systems on the Euclidean group SE(2), Control Cybernet., 41, 2012, 513-524, (2012) Zbl1318.93028MR3087026
- Agrachev, A.A., Sachkov, Y.L., Control Theory from the Geometric Viewpoint, 2004, Springer Science & Business Media, (2004) Zbl1062.93001MR2062547
- Biggs, R., Remsing, C.C., A category of control systems, An. Şt. Univ. Ovidius Constanţa, 20, 2012, 355-368, (2012) Zbl1274.93062MR2928428
- Biggs, R., Remsing, C.C., Control affine systems on semisimple three-dimensional Lie groups, An. Şt. Univ. “A.I. Cuza” Iaşi. Ser. Mat., 59, 2013, 399-414, (2013) Zbl1299.93049MR3252448
- Biggs, R., Remsing, C.C., 10.5817/AM2013-3-187, Arch. Math. (Brno), 49, 2013, 187-197, (2013) Zbl1299.93050MR3144181DOI10.5817/AM2013-3-187
- Biggs, R., Remsing, C.C., Control affine systems on solvable three-dimensional Lie groups, II, Note Mat., 33, 2013, 19-31, (2013) Zbl1287.93022MR3178571
- Brockett, R.W., 10.1137/0310021, SIAM J. Control, 10, 1972, 265-284, (1972) Zbl0253.93003MR0315559DOI10.1137/0310021
- Elkin, V.I., 10.1007/BF02364666, J. Math. Sci., 88, 1998, 675-721, (1998) Zbl0953.93020MR1613095DOI10.1007/BF02364666
- Gardner, R.B., Shadwick, W.F., Feedback equivalence of control systems, Systems Control Lett., 8, 1987, 463-465, (1987) Zbl0691.93023MR0890084
- Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B., Foundations of Lie Theory and Lie Transformation Groups, 1997, Springer Science & Business Media, (1997) Zbl0999.17500MR1631937
- Jakubczyk, B., Equivalence and invariants of nonlinear control systems, Nonlinear Controllability and Optimal Control , 1990, 177-218, Marcel Dekker, In: H.J. Sussmann (ed.). (1990) Zbl0712.93027MR1061386
- Jakubczyk, B., Critical {H}amiltonians and feedback invariants, Geometry of Feedback and Optimal Control , 1998, 219-256, Marcel Dekker, In: B. Jakubczyk, W. Respondek (eds.). (1998) Zbl0925.93136MR1493015
- Jakubczyk, B., Respondek, W., On linearization of control systems, Bull. Acad. Polon. Sci. Ser. Sci. Math., 28, 1980, 517-522, (1980) Zbl0489.93023MR0629027
- Jurdjevic, V., Geometric Control Theory, 1997, Cambridge University Press, (1997) Zbl0940.93005MR1425878
- Jurdjevic, V., Sussmann, H.J., 10.1016/0022-0396(72)90035-6, J. Diff. Equations, 12, 1972, 313-329, (1972) Zbl0237.93027MR0331185DOI10.1016/0022-0396(72)90035-6
- Krener, A.J., 10.1137/0311051, SIAM J. Control, 11, 1973, 670-676, (1973) Zbl0243.93009MR0343967DOI10.1137/0311051
- Remsing, C.C., Optimal control and Hamilton-Poisson formalism, Int. J. Pure Appl. Math., 59, 2010, 11-17, (2010) Zbl1206.49006MR2642777
- Respondek, W., Tall, I.A., Feedback equivalence of nonlinear control systems: a survey on formal approach, Chaos in Automatic Control, 2006, 137-262, In: W. Perruquetti, J.-P. Barbot (eds.). (2006) Zbl1203.93039MR2283271
- Sachkov, Y.L., 10.1007/s10958-008-9275-0, J. Math. Sci., 156, 2009, 381-439, (2009) Zbl1211.93038MR2373391DOI10.1007/s10958-008-9275-0
- Sussmann, H.J., 10.1090/S0002-9939-1974-0356116-6, Proc. Amer. Math. Soc., 45, 1974, 349-356, (1974) Zbl0301.58003MR0356116DOI10.1090/S0002-9939-1974-0356116-6
- Sussmann, H.J., Lie brackets, real analyticity and geometric control, Differential Geometric Control Theory, 1983, 1-116, Birkhäuser, In: R.W. Brockett, R.S. Millman, H.J. Sussmann (eds.). (1983) Zbl0545.93002MR0708500
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.