On the equivalence of control systems on Lie groups

Rory Biggs; Claudiu C. Remsing

Communications in Mathematics (2015)

  • Volume: 23, Issue: 2, page 119-129
  • ISSN: 1804-1388

Abstract

top
We consider state space equivalence and feedback equivalence in the context of (full-rank) left-invariant control systems on Lie groups. We prove that two systems are state space equivalent (resp.~detached feedback equivalent) if and only if there exists a Lie group isomorphism relating their parametrization maps (resp. traces). Local analogues of these results, in terms of Lie algebra isomorphisms, are also found. Three illustrative examples are provided.

How to cite

top

Biggs, Rory, and Remsing, Claudiu C.. "On the equivalence of control systems on Lie groups." Communications in Mathematics 23.2 (2015): 119-129. <http://eudml.org/doc/276176>.

@article{Biggs2015,
abstract = {We consider state space equivalence and feedback equivalence in the context of (full-rank) left-invariant control systems on Lie groups. We prove that two systems are state space equivalent (resp.~detached feedback equivalent) if and only if there exists a Lie group isomorphism relating their parametrization maps (resp. traces). Local analogues of these results, in terms of Lie algebra isomorphisms, are also found. Three illustrative examples are provided.},
author = {Biggs, Rory, Remsing, Claudiu C.},
journal = {Communications in Mathematics},
keywords = {left-invariant control system; state space equivalence; detached feedback equivalence; left-invariant control system; state space equivalence; detached feedback equivalence},
language = {eng},
number = {2},
pages = {119-129},
publisher = {University of Ostrava},
title = {On the equivalence of control systems on Lie groups},
url = {http://eudml.org/doc/276176},
volume = {23},
year = {2015},
}

TY - JOUR
AU - Biggs, Rory
AU - Remsing, Claudiu C.
TI - On the equivalence of control systems on Lie groups
JO - Communications in Mathematics
PY - 2015
PB - University of Ostrava
VL - 23
IS - 2
SP - 119
EP - 129
AB - We consider state space equivalence and feedback equivalence in the context of (full-rank) left-invariant control systems on Lie groups. We prove that two systems are state space equivalent (resp.~detached feedback equivalent) if and only if there exists a Lie group isomorphism relating their parametrization maps (resp. traces). Local analogues of these results, in terms of Lie algebra isomorphisms, are also found. Three illustrative examples are provided.
LA - eng
KW - left-invariant control system; state space equivalence; detached feedback equivalence; left-invariant control system; state space equivalence; detached feedback equivalence
UR - http://eudml.org/doc/276176
ER -

References

top
  1. Adams, R.M., Biggs, R., Remsing, C.C., Equivalence of control systems on the Euclidean group SE(2), Control Cybernet., 41, 2012, 513-524, (2012) Zbl1318.93028MR3087026
  2. Agrachev, A.A., Sachkov, Y.L., Control Theory from the Geometric Viewpoint, 2004, Springer Science & Business Media, (2004) Zbl1062.93001MR2062547
  3. Biggs, R., Remsing, C.C., A category of control systems, An. Şt. Univ. Ovidius Constanţa, 20, 2012, 355-368, (2012) Zbl1274.93062MR2928428
  4. Biggs, R., Remsing, C.C., Control affine systems on semisimple three-dimensional Lie groups, An. Şt. Univ. “A.I. Cuza” Iaşi. Ser. Mat., 59, 2013, 399-414, (2013) Zbl1299.93049MR3252448
  5. Biggs, R., Remsing, C.C., 10.5817/AM2013-3-187, Arch. Math. (Brno), 49, 2013, 187-197, (2013) Zbl1299.93050MR3144181DOI10.5817/AM2013-3-187
  6. Biggs, R., Remsing, C.C., Control affine systems on solvable three-dimensional Lie groups, II, Note Mat., 33, 2013, 19-31, (2013) Zbl1287.93022MR3178571
  7. Brockett, R.W., 10.1137/0310021, SIAM J. Control, 10, 1972, 265-284, (1972) Zbl0253.93003MR0315559DOI10.1137/0310021
  8. Elkin, V.I., 10.1007/BF02364666, J. Math. Sci., 88, 1998, 675-721, (1998) Zbl0953.93020MR1613095DOI10.1007/BF02364666
  9. Gardner, R.B., Shadwick, W.F., Feedback equivalence of control systems, Systems Control Lett., 8, 1987, 463-465, (1987) Zbl0691.93023MR0890084
  10. Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B., Foundations of Lie Theory and Lie Transformation Groups, 1997, Springer Science & Business Media, (1997) Zbl0999.17500MR1631937
  11. Jakubczyk, B., Equivalence and invariants of nonlinear control systems, Nonlinear Controllability and Optimal Control , 1990, 177-218, Marcel Dekker, In: H.J. Sussmann (ed.). (1990) Zbl0712.93027MR1061386
  12. Jakubczyk, B., Critical {H}amiltonians and feedback invariants, Geometry of Feedback and Optimal Control , 1998, 219-256, Marcel Dekker, In: B. Jakubczyk, W. Respondek (eds.). (1998) Zbl0925.93136MR1493015
  13. Jakubczyk, B., Respondek, W., On linearization of control systems, Bull. Acad. Polon. Sci. Ser. Sci. Math., 28, 1980, 517-522, (1980) Zbl0489.93023MR0629027
  14. Jurdjevic, V., Geometric Control Theory, 1997, Cambridge University Press, (1997) Zbl0940.93005MR1425878
  15. Jurdjevic, V., Sussmann, H.J., 10.1016/0022-0396(72)90035-6, J. Diff. Equations, 12, 1972, 313-329, (1972) Zbl0237.93027MR0331185DOI10.1016/0022-0396(72)90035-6
  16. Krener, A.J., 10.1137/0311051, SIAM J. Control, 11, 1973, 670-676, (1973) Zbl0243.93009MR0343967DOI10.1137/0311051
  17. Remsing, C.C., Optimal control and Hamilton-Poisson formalism, Int. J. Pure Appl. Math., 59, 2010, 11-17, (2010) Zbl1206.49006MR2642777
  18. Respondek, W., Tall, I.A., Feedback equivalence of nonlinear control systems: a survey on formal approach, Chaos in Automatic Control, 2006, 137-262, In: W. Perruquetti, J.-P. Barbot (eds.). (2006) Zbl1203.93039MR2283271
  19. Sachkov, Y.L., 10.1007/s10958-008-9275-0, J. Math. Sci., 156, 2009, 381-439, (2009) Zbl1211.93038MR2373391DOI10.1007/s10958-008-9275-0
  20. Sussmann, H.J., 10.1090/S0002-9939-1974-0356116-6, Proc. Amer. Math. Soc., 45, 1974, 349-356, (1974) Zbl0301.58003MR0356116DOI10.1090/S0002-9939-1974-0356116-6
  21. Sussmann, H.J., Lie brackets, real analyticity and geometric control, Differential Geometric Control Theory, 1983, 1-116, Birkhäuser, In: R.W. Brockett, R.S. Millman, H.J. Sussmann (eds.). (1983) Zbl0545.93002MR0708500

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.